Abstract
Recent advances of experimental methods and neuroscience research have made neural signals constantly massive and analysis of these signals highly compute-intensive. This study explore the possibility proposes a massively parallel approach for analysis of neural signals using General-purpose computing on the graphics processing unit (GPGPU). We demonstrate the uses and correctness of the proposed approach via a case of analyzing EEG with focal epilepsy. An experimental examination has been carried out to investigate (1) the GPGPU-aided approach’s performance and (2) energy costs of the GPGPU-aided application versus the original CPU-only systems. Experimental results indicate that the proposed approach excels in both aspects.
Similar content being viewed by others
References
Chen, D., Theodoropoulos, G.K., Turner, S.J., Cai, W., Minson, R., Zhang, Y.: Large scale agent-based simulation on the grid. Future Gener. Comput. Syst. 24(7), 658–671 (2008)
Chen, D., Turner, S.J., Cai, W., Theodoropoulos, G.K., Xiong, M., Lees, M.: Synchronization in federation community networks. J. Parallel Distrib. Comput. 70(2), 144–159 (2010)
Chen, D., Li, D., Xiong, M., Bao, H., Li, X.: GPGPU-aided ensemble empirical mode decomposition for EEG analysis during anaesthesia. IEEE Trans. Inf. Technol. Biomed. 14(6), 1417–1427 (2010)
Finnerty, G.T., Jefferys, J.G.: 9–16 Hz oscillation precedes secondary generalization of seizures in the rat tetanus toxin model of epilepsy. J. Neurophysiol. 83, 2217–2226 (2000)
Finnerty, G.T., Jefferys, J.G.: Investigation of the neuronal aggregate generating seizures in the rat tetanus toxin model of epilepsy. J. Neurophysiol. 88, 2919–2927 (2002)
Hasson, U., Skipper, Ji, Wilde, Mj., Nusbaum, Hc., Small, Sl.: Improving the analysis, storage and sharing of neuroimaging data using relational databases and distributed computing. NeuroImage 39(2), 693–706 (2008)
Heler, T., Steen, P.A.: Assessment of anaesthesia depth. Acta Anaesthesiol. Scand. 40, 1087–1100 (1996)
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454, 903–995 (1998)
Teeters, J.L., Harris, K.D., Millman, K.J., Olshausen, B.A., Sommer, F.T.: Data sharing for computational neuroscience. Neuroinformatics 6(1), 47–55 (2008)
Li, X.L., Li, D., Liang, Z.H., Voss, L.J., Sleigh, J.W.: Analysis of depth of anaesthesia with Hilbert-Huang spectral entropy. Clin. Neurophysiol. 119(11), 2465–2475 (2008)
Müller, A., Osterhage, H., Sowaa, R., Andrzejakc, R.G., Mormanna, F., Lehnertz, K.: A distributed computing system for multivariate time series analyses of multichannel neurophysiological data. J. Neurosci. Methods 152(1–2), 190–201 (2006)
NVIDIA: NVIDIA CUDA C Programming Guide Version 3.2. http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf (2011)
Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)
Rampil, I.J., Matteo, R.S.: Changes in EEG spectral edge frequency correlate with the hemodynamic response to laryngoscopy and intubation. Anesthesiology 67, 139–142 (1987)
Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., Sarrafzadeh, M.: Energy-aware high performance computing with graphic processing units. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems (HotPower’08), p. 11. USENIX, Berkeley (2008)
Rossant, C., Goodman, D.F.M., Fontaine, B., Platkiewicz, J., Magnusson, A.K., Brette, R.: Fitting neuron models to spike trains. Frontiers Neurosci. 5, 9 (2011). doi:10.3389/fnins.2011.00009
Sanei, S., Chambers, J.: EEG Signal Processing, pp. 35–50. Wiley, New York (2007)
Schenk, O., Christena, M., Burkharta, H.: Algorithmic performance studies on graphics processing units. J. Parallel Distrib. Comput. 68(10), 1360–1369 (2008)
Tolke, J., Krafczyk, M.: TeraFLOP computing on a desktop pc with GPUs for 3D CFD. Int. J. Comput. Fluid Dyn. 22, 443–456 (2008)
Wang, L., von Laszewski, G., Kunze, M., Tao, J., Dayal, J.: Provide virtual distributed environments for grid computing on demand. Adv. Eng. Softw. 41(2), 213–219 (2010)
Wang, L., Jie, W.: Towards supporting multiple virtual private computing environments on computational Grids. Adv. Eng. Softw. 40(4), 239–245 (2009)
Wang, L., von Laszewski, G., Chen, D., Tao, J., Kunze, M.: Provide virtual machine information for grid computing. IEEE Trans. SMC (TSMC) 40(6), 1362–1374 (2010)
Wang, L., von Laszewski, G., Tao, J., Kunze, M.: Grid virtualization engine: design, implementation and evaluation. IEEE Syst. J. (ISJ) 3(4), 477–488 (2009)
Wang, L., von Laszewski, G., Kunze, M., Tao, J.: Cloud computing: a perspective study. New Gener. Comput. 28(2), 137–146 (2010)
Wang, L., Fu, C.: Research advances in modern cyberinfrastructure. New Gener. Comput. 28(2), 111–112 (2010)
Wilson, J.A., Williams, J.C.: Massively parallel signal processing using the graphics processing unit for real-time brain-computer interface feature extraction. Front NeuroEng. 2, 11 (2009)
Wu, Z.H., Huang, N.E.: Ensemble empirical mode decomposition: a noise assisted data analysis method. Adv. Adap. Data Anal. 1, 1–41 (2009)
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Chen, D., Lu, D., Tian, M. et al. Towards energy-efficient parallel analysis of neural signals. Cluster Comput 16, 39–53 (2013). https://doi.org/10.1007/s10586-011-0175-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-011-0175-6