[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Towards energy-efficient parallel analysis of neural signals

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Recent advances of experimental methods and neuroscience research have made neural signals constantly massive and analysis of these signals highly compute-intensive. This study explore the possibility proposes a massively parallel approach for analysis of neural signals using General-purpose computing on the graphics processing unit (GPGPU). We demonstrate the uses and correctness of the proposed approach via a case of analyzing EEG with focal epilepsy. An experimental examination has been carried out to investigate (1) the GPGPU-aided approach’s performance and (2) energy costs of the GPGPU-aided application versus the original CPU-only systems. Experimental results indicate that the proposed approach excels in both aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, D., Theodoropoulos, G.K., Turner, S.J., Cai, W., Minson, R., Zhang, Y.: Large scale agent-based simulation on the grid. Future Gener. Comput. Syst. 24(7), 658–671 (2008)

    Article  Google Scholar 

  2. Chen, D., Turner, S.J., Cai, W., Theodoropoulos, G.K., Xiong, M., Lees, M.: Synchronization in federation community networks. J. Parallel Distrib. Comput. 70(2), 144–159 (2010)

    Article  MATH  Google Scholar 

  3. Chen, D., Li, D., Xiong, M., Bao, H., Li, X.: GPGPU-aided ensemble empirical mode decomposition for EEG analysis during anaesthesia. IEEE Trans. Inf. Technol. Biomed. 14(6), 1417–1427 (2010)

    Article  Google Scholar 

  4. Finnerty, G.T., Jefferys, J.G.: 9–16 Hz oscillation precedes secondary generalization of seizures in the rat tetanus toxin model of epilepsy. J. Neurophysiol. 83, 2217–2226 (2000)

    Google Scholar 

  5. Finnerty, G.T., Jefferys, J.G.: Investigation of the neuronal aggregate generating seizures in the rat tetanus toxin model of epilepsy. J. Neurophysiol. 88, 2919–2927 (2002)

    Article  Google Scholar 

  6. Hasson, U., Skipper, Ji, Wilde, Mj., Nusbaum, Hc., Small, Sl.: Improving the analysis, storage and sharing of neuroimaging data using relational databases and distributed computing. NeuroImage 39(2), 693–706 (2008)

    Article  Google Scholar 

  7. Heler, T., Steen, P.A.: Assessment of anaesthesia depth. Acta Anaesthesiol. Scand. 40, 1087–1100 (1996)

    Article  Google Scholar 

  8. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Teeters, J.L., Harris, K.D., Millman, K.J., Olshausen, B.A., Sommer, F.T.: Data sharing for computational neuroscience. Neuroinformatics 6(1), 47–55 (2008)

    Article  Google Scholar 

  10. Li, X.L., Li, D., Liang, Z.H., Voss, L.J., Sleigh, J.W.: Analysis of depth of anaesthesia with Hilbert-Huang spectral entropy. Clin. Neurophysiol. 119(11), 2465–2475 (2008)

    Article  Google Scholar 

  11. Müller, A., Osterhage, H., Sowaa, R., Andrzejakc, R.G., Mormanna, F., Lehnertz, K.: A distributed computing system for multivariate time series analyses of multichannel neurophysiological data. J. Neurosci. Methods 152(1–2), 190–201 (2006)

    Article  Google Scholar 

  12. NVIDIA: NVIDIA CUDA C Programming Guide Version 3.2. http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf (2011)

  13. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)

    Article  Google Scholar 

  14. Rampil, I.J., Matteo, R.S.: Changes in EEG spectral edge frequency correlate with the hemodynamic response to laryngoscopy and intubation. Anesthesiology 67, 139–142 (1987)

    Article  Google Scholar 

  15. Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., Sarrafzadeh, M.: Energy-aware high performance computing with graphic processing units. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems (HotPower’08), p. 11. USENIX, Berkeley (2008)

    Google Scholar 

  16. Rossant, C., Goodman, D.F.M., Fontaine, B., Platkiewicz, J., Magnusson, A.K., Brette, R.: Fitting neuron models to spike trains. Frontiers Neurosci. 5, 9 (2011). doi:10.3389/fnins.2011.00009

    Google Scholar 

  17. Sanei, S., Chambers, J.: EEG Signal Processing, pp. 35–50. Wiley, New York (2007)

    Google Scholar 

  18. Schenk, O., Christena, M., Burkharta, H.: Algorithmic performance studies on graphics processing units. J. Parallel Distrib. Comput. 68(10), 1360–1369 (2008)

    Article  Google Scholar 

  19. Tolke, J., Krafczyk, M.: TeraFLOP computing on a desktop pc with GPUs for 3D CFD. Int. J. Comput. Fluid Dyn. 22, 443–456 (2008)

    Article  Google Scholar 

  20. Wang, L., von Laszewski, G., Kunze, M., Tao, J., Dayal, J.: Provide virtual distributed environments for grid computing on demand. Adv. Eng. Softw. 41(2), 213–219 (2010)

    Article  MATH  Google Scholar 

  21. Wang, L., Jie, W.: Towards supporting multiple virtual private computing environments on computational Grids. Adv. Eng. Softw. 40(4), 239–245 (2009)

    Article  MATH  Google Scholar 

  22. Wang, L., von Laszewski, G., Chen, D., Tao, J., Kunze, M.: Provide virtual machine information for grid computing. IEEE Trans. SMC (TSMC) 40(6), 1362–1374 (2010)

    Google Scholar 

  23. Wang, L., von Laszewski, G., Tao, J., Kunze, M.: Grid virtualization engine: design, implementation and evaluation. IEEE Syst. J. (ISJ) 3(4), 477–488 (2009)

    Article  Google Scholar 

  24. Wang, L., von Laszewski, G., Kunze, M., Tao, J.: Cloud computing: a perspective study. New Gener. Comput. 28(2), 137–146 (2010)

    Article  MATH  Google Scholar 

  25. Wang, L., Fu, C.: Research advances in modern cyberinfrastructure. New Gener. Comput. 28(2), 111–112 (2010)

    Article  MathSciNet  Google Scholar 

  26. Wilson, J.A., Williams, J.C.: Massively parallel signal processing using the graphics processing unit for real-time brain-computer interface feature extraction. Front NeuroEng. 2, 11 (2009)

    Article  Google Scholar 

  27. Wu, Z.H., Huang, N.E.: Ensemble empirical mode decomposition: a noise assisted data analysis method. Adv. Adap. Data Anal. 1, 1–41 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Chen or Xiaoli Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Lu, D., Tian, M. et al. Towards energy-efficient parallel analysis of neural signals. Cluster Comput 16, 39–53 (2013). https://doi.org/10.1007/s10586-011-0175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-011-0175-6

Keywords

Navigation