Abstract
Floods are caused by a number of interacting factors, making it remarkably difficult to explain changes in flood hazard. This paper reviews the current understanding of historical trends and variability in flood hazard across Australia. Links between flood and rainfall trends cannot be made due to the influence of climate processes over a number of spatial and temporal scales as well as landscape changes that affect the catchment response. There are also still considerable uncertainties in future rainfall projections, particularly for sub-daily extreme rainfall events. This is in addition to the inherent uncertainty in hydrological modelling such as antecedent conditions and feedback mechanisms.
Research questions are posed based on the current state of knowledge. These include a need for high-resolution climate modelling studies and efforts in compiling and analysing databases of sub-daily rainfall and flood records. Finally there is a need to develop modelling frameworks that can deal with the interaction between climate processes at different spatio-temporal scales, so that historical flood trends can be better explained and future flood behaviour understood.
Similar content being viewed by others
References
Alexander LV, Hope P, Collins D, Trewin B, Lynch A, Nicholls N (2007) Trends in Australia’s climate means and extremes: a global context. Aust Meteorol Mag 56:1–18
Allen M (2003) Liability for climate change. Nature 421:891–892. doi:10.1038/421891a
Argüeso D, Evans J, Fita L (2013) Precipitation bias correction of very high resolution regional climate models. Hydrol Earth Syst Sci Discuss 10
Arnell N, Gosling S (2014) The impacts of climate change on river flood risk at the global scale. Clim Chang 1–15. doi:10.1007/s10584-014-1084-5
Engineers Australia (1987) Australian rainfall and runoff. Engineers Australia, Canberra
Beringer J, Hutley LB, Hacker JM, Neininger B (2011) Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: from point to region. Agric For Meteorol 151:1409–1416
Beven KJ (2000) Uniqueness of place and process representations in hydrological modelling. Hydrol Earth Syst Sci Discuss 4:203–213
Blöschl G et al (2015) Increasing river floods: fiction or reality? Wiley Interdiscip Rev Water. doi:10.1002/wat2.1079
Bureau of Meteorology (2015) Hydrologic reference stations, October 2015 edn., http://www.bom.gov.au/water/hrs/index.shtm
Callaghan J, Power SB (2014) Major coastal flooding in southeastern Australia 1860-2012, associated deaths and weather systems. Aust Meteorol Oceanogr J 64:183–213
Chiew FH, Piechota TC, Dracup JA, McMahon TA (1998) El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting. J Hydrol 204:138–149
Cordery I (2003) A case for increased collection of water resources data Australian. J Water Resour 6:95–104
CSIRO, Bureau of Meteorology (2015) Climate change in Australia projections for Australia’s NRM regions: technical report. CSIRO and Bureau of Meteorology, Australia
Dankers R et al (2014) First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proc Natl Acad Sci 111:3257–3261. doi:10.1073/pnas.1302078110
Evans JP, McCabe M (2013) Effect of model resolution on a regional climate model simulation over southeast Australia. Clim Res 56:131–145
Evans JP, Boyer-Souchet I (2012) Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys Res Lett 39
Evans S, Marchand R, Ackerman T (2014) Variability of the Australian monsoon and precipitation trends at Darwin. J Climate 27:8487–8500. doi:10.1175/Jcli-D-13-00422.1
Gaál L, Szolgay J, Kohnová S, Parajka J, Merz R, Viglione A, Blöschl G (2012) Flood timescales: understanding the interplay of climate and catchment processes through comparative hydrology. Water Resour Res 48:n/a-n/a. doi:10.1029/2011WR011509
Gallant AJ, Hennessy KJ, Risbey J (2007) Trends in rainfall indices for six Australian regions: 1910–2005. Aust Meteorol Mag 56:223–241
Guha-Sapir D, Below R, Hoyois P (2015) EM-DAT: international disaster database. Université Catholique de Louvain,, Brussels, Belgium
Hapuarachchi HAP, Wang QJ, Pagano TC (2011) A review of advances in flash flood forecasting. Hydrol Process 25:2771–2784. doi:10.1002/Hyp.8040
Hardwick-Jones R, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys Res Lett 37. doi:10.1029/2010GL045081
Harrigan S, Murphy C, Hall J, Wilby R, Sweeney J (2014) Attribution of detected changes in streamflow using multiple working hypotheses. Hydrol Earth Syst Sci 18:1935–1952
Hirabayashi Y et al (2013) Global flood risk under climate change. Nat Clim Chang 3:816–821. doi:10.1038/nclimate1911
IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. doi:10.1017/CBO9781107415324
Ishak EH, Rahman A, Westra S, Sharma A, Kuczera G (2013) Evaluating the non-stationarity of Australian annual maximum flood. J Hydrol 494:134–145. doi:10.1016/j.jhydrol.2013.04.021
Jakob D, Karoly DJ, Seed A (2011a) Non-stationarity in daily and sub-daily intense rainfall—part 1: Sydney Australia. Nat Hazards Earth Syst Sci 11:2263–2271. doi:10.5194/nhess-11-2263-2011
Jakob D, Karoly DJ, Seed A (2011b) Non-stationarity in daily and sub-daily intense rainfall—part 2: regional assessment for sites in south-east Australia. Nat Hazards Earth Syst Sci 11:2273–2284. doi:10.5194/nhess-11-2273-2011
Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Chang 4:570–576. doi:10.1038/Nclimate2258
Kiem AS, Verdon-Kidd DC (2013) The importance of understanding drivers of hydrocliamtic variability for robust flood risk planning in the coastal zone Australian. J Water Resour 17:126–134
Kiem AS, Franks SW, Kuczera G (2003) Muti-decadal variability of flood risk. Geophys Res Lett 30:1035. doi:10.1029/2002GL015992
Kundzewicz ZW et al (2013) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59:1–28. doi:10.1080/02626667.2013.857411
Lau WKM, Wu HT, Kim KM (2013) A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys Res Lett 40:3163–3169
Laz OU, Rahman A, Yilmaz A, Haddad K (2014) Trends in sub-hourly, sub-daily and daily extreme rainfall events in eastern Australia. J Water Clim Chang 5:667–675
Leonard M et al (2014) A compound event framework for understanding extreme impacts. Wiley Interdiscip Rev Clim Chang 5:113–128
McKay G (2007) THE LIFE BLOOD OF FLOODS flood producing weather systems. Paper presented at the 47th Annual NSW Floodplain Management Conference, Gunnedah, 27 February - 1 March 2007
Merz B, Vorogushyn S, Uhlemann S, Delgado J, Hundecha Y (2012) HESS opinions “More efforts and scientific rigour are needed to attribute trends in flood time series”. Hydrol Earth Syst Sci 16:1379–1387
Micevski T, Franks SW, Kuczera G (2006) Multidecadal variability in coastal eastern Australian flood data. J Hydrol 327:219–225. doi:10.1016/j.jhydrol.2005.11.017
Mirus BB, Loague K (2013) How runoff begins (and ends): characterizing hydrologic response at the catchment scale. Water Resour Res 49:2987–3006. doi:10.1002/wrcr.20218
Pall P et al (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470:382–385
Pena-Arancibia JL, Dijk AIJMV, Guerschman JP, Mulligan M, Bruijnzeel LA, McVicar TR, van Dijk AIJM (2012) Detecting changes in streamflow after partial woodland clearing in two large catchments in the seasonal tropics. J Hydrol (Amsterdam) 416(417):60–71. doi:10.1016/j.jhydrol.2011.11.036
Perkins SE, Moise A, Whetton P, Katzfey J (2014) Regional changes of climate extremes over Australia—a comparison of regional dynamical downscaling and global climate model simulations. Int J Climatol 34:3456–3478. doi:10.1002/joc.3927
Power S, Casey T, Folland CK, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Climate Dynam 15:319–324
Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253
Rouillard A, Skrzypek G, Dogramaci S, Turney C, Grierson P (2015) Impacts of high inter-annual variability of rainfall on a century of extreme hydrologic regime of northwest Australia. Hydrol Earth Syst Sci 19:2057–2078
Shi G, Cai W, Cowan T, Ribbe J, Rotstayn L, Dix M (2008) Variability and trend of North West Australia rainfall: observations and coupled climate modeling. J Climate 21:2938–2959
Shuster WD, Bonta J, Thurston H, Warnemuende E, Smith DR (2005) Impacts of impervious surface on watershed hydrology: a review. Urban Water J 2:263–275. doi:10.1080/15730620500386529
Trancoso R, Larsen JR, McAlpine C, McVicar TR, Phinn S (2016) Linking the Budyko framework and the Dunne diagram. J Hydrol 535:581–597
van Dijk AIJM, Keenan RJ (2007) Planted forests and water in perspective. For Ecol Manag 251:1–9. doi:10.1016/j.foreco.2007.06.010
Verdon DC, Wyatt AM, Kiem AS, Franks SW (2004) Multidecadal variability of rainfall and streamflow: Eastern Australia. Water Resour Res 40. doi:10.1029/2004wr003234
Ward PJ, Jongman B, Kummu M, Dettinger MD, Weiland FCS, Winsemius HC (2014) Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc Natl Acad Sci 111:15659–15664
Westra S, Sisson SA (2011) Detection of non-stationarity in precipitation extremes using a max-stable process model. J Hydrol 406:119–128. doi:10.1016/j.jhydrol.2011.06.014
Westra S et al (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555. doi:10.1002/2014rg000464
White CJ, McInnes KL, Cechet RP, Corney SP, Grose MR, Holz G, Katzfey JJ, Bindoff NL (2013) On regional dynamical downscaling for the assessment and projection of future temperature and precipitation extremes across Tasmania, Australia. Clim Dyn 41:3145–3165. doi:10.1007/s00382-013-1718-8
Wu P, Christidis N, Stott P (2013) Anthropogenic impact on Earth/’s hydrological cycle. Nat Clim Chang 3:807–810
Yilmaz A, Perera B (2013) Extreme rainfall nonstationarity investigation and intensity–frequency–duration relationship. J Hydrol Eng 19:1160–1172
Acknowledgments
This paper was a result of collaboration through the working group ‘Trends and Extremes’ as part of the Australian Water and Energy Exchanges Initiative (OzEWEX). J. Evans was supported by the Australian Research Council Future Fellowship FT110100576. A. Van Dijk was supported through Australian Research Council’s Discovery Projects funding scheme (project number DP40103679). S. Westra and F. Johnson were supported through Australian Research Council’s Discovery Project DP150100411. The constructive comments from the anonymous reviewers helped to improve the clarity of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of a Special Issue on “The effect of historical and future climate changes on natural hazards in Australia” edited by Seth Westra, Chris White and Anthony Kiem.
Rights and permissions
About this article
Cite this article
Johnson, F., White, C.J., van Dijk, A. et al. Natural hazards in Australia: floods. Climatic Change 139, 21–35 (2016). https://doi.org/10.1007/s10584-016-1689-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10584-016-1689-y