Abstract
Xyloglucans are highly branched, hydroxyl rich polyglucans that for their abundance in nature, biocompatibility, film forming and gelation ability may take a prominent role in the design and fabrication of biomedical devices, including in situ forming scaffolds for tissue engineering, wound dressings and epidermal sensors. The understanding and exploitation of their self-assembly behavior is key for the device performance optimization. A multi-scale analysis, conducted combining small-angle X-ray scattering, both static and dynamic light scattering at large and small angles, and rheological measurements, provides a description of the supramolecular organization of this biopolymer, from the scale of a few nano-meter, to the meso- and macro-scale both in the sol and gel states. Xyloglucan self-assembly is described as multi-step and hierarchical process with different levels of organization.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ajovalasit A, Sabatino MA, Todaro S, Alessi S, Giacomazza D, Picone P, Di Carlo M, Dispenza C (2018a) Xyloglucan-based hydrogel films for wound dressing: structure property relationships. Carbohydr Polym 1:262–272. https://doi.org/10.1016/j.carbpol.2017.09.092
Ajovalasit A, Caccami MC, Amendola S, Sabatino MA, Alotta G, Zingales M, Giacomazza D, Occhiuzzi C, Marrocco G, Dispenza C (2018b) Development and characterization of xyloglucan-poly(vinyl alcohol) hydrogel membrane for wireless smart wound dressings. Eur Polym J 106:214–222. https://doi.org/10.1016/j.eurpolymj.2018.07.038
Arruda IRS, Albuquerque PBS, Santos GRC, Silva AG, Mourão PAS, Correia MTS, Vicente AA, Carneiro-da-Cunha MG (2015) Structure and rheological properties of a xyloglucan extracted from Hymenaea courbaril var. courbaril seeds. Int J Biol Macromol 73:31–38. https://doi.org/10.1016/j.ijbiomac.2014.11.001
Bottoni G, Maffei P, Sforzini A, Federici M, Caramella C, Rossi S, Viscomi GC (2006) Mucoadhesive xyloglucan-containing formulations useful in medical devices and in pharmaceutical formulations WO2006131262A1
Brown W, Nicolai T (1993) Dynamic light scattering (Chapter 6). Ed. Clarendon Press, Oxford
Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x
Chen SH, Texeira J (1986) Structure and fractal dimension of protein–detergent complexes. Phys Rev Lett 57:2583–2586. https://doi.org/10.1103/PhysRevLett.57.2583
Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17:253–285
Cipelletti L, Weitz DA (1999) Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator. Rev Sci Instrum 70:3214–3221. https://doi.org/10.1063/1.1149894
de Freitas RA, Martin S, Santos GL, Valenga F, Buckeridged MS, Reicher F, Sierakowsk MR (2005) Physico-chemical properties of seed xyloglucans from different sources. Carbohydr Polym 60:507–514. https://doi.org/10.1016/j.carbpol.2015.04.066
de Freitas RA, Spier VC, Sierakowski MR, Nicolai T, Benyahia L, Chassenieux C (2015) Transient and quasi-permanent networks in xyloglucan solutions. Carbohydr Polym 129:216–223. https://doi.org/10.1016/j.carbpol.2015.04.066
Dea ICM (1989) Industrial polysaccharides. Pure Appl Chem 61(7):1315–1322. https://doi.org/10.1351/pac198961071315
Debye P, Bueche AM (1949) Scattering by an inhomogeneous solid. J Appl Phys 20:518–525. https://doi.org/10.1063/1.1698419
do Rosàrio MM, Kangussu-Marcolino MM, do Amaral AE, Noleto GR, Petkowicz CL (2011) Storage xyloglucans: potent macrophages activators. Chem Biol Interact 189:127–133. https://doi.org/10.1016/j.cbi.2010.09.024
Fry SC (1988) The growing plant cell wall. Longman Scientific & Technical Editor, Harlow
Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89:1–3. https://doi.org/10.1111/j.1399-3054.1993.tb01778.x
Fuchs T, Richtering W, Burchard W, Kajiwara K, Kitamura S (1997) Gel point in physical gels: rheology and light scattering from thermoreversibly gelling schizophyllan. Polym Gels Netw 5:541–559. https://doi.org/10.1016/S0966-7822(97)00027-0
Haw MD, Poon WCK, Pusey PN (1997) Structure and arrangement of clusters in cluster aggregation. Phys Rev E 56:1918–1933. https://doi.org/10.1103/PhysRevE.56.1918
Kochumalayil J, Houssine S, Qi Z, Berglund L (2012) Xyloglucan films. Patent 20120216706
Krall AH, Weitz DA (1998) Internal dynamics and elasticity of fractal colloidal gels. Phys Rev Lett 80:778–781
Kulkarni AD, Joshi AA, Patil CL, Amale PD, Patel HM, Surana SJ, Belgamwar VS, Chaudhari KS, Pardeshi CV (2017) Xyloglucan: a functional biomacromolecule for drug delivery applications. Int J Biol Macromol 104:799–812. https://doi.org/10.1016/j.ijbiomac.2017.06.088
Manchanda R, Arora SC, Manchanda R (2014) Tamarind seed polysaccharide and its modification-versatile pharmaceutical excipients—a review. Int J Pharm Technol Res 6:412–420
Mishra A, Malhotra AV (2009) Tamarind xyloglucan: a polysaccharide with versatile application potential. J Mater Chem 19:8528–8536. https://doi.org/10.1039/B911150F
Muller F, Manet S, Jean B, Chambat G, Boué F, Heux L, Fabrice Cousin F (2011) SANS measurements of semiflexible xyloglucan polysaccharide chains in water reveal their self-avoiding statistics. Biomacromol 12:3330–3336. https://doi.org/10.1021/bm200881x
Nishinari K, Yamatoya M, Shirakawa M (2000) Xyloglucan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, chap 14. Woodhead Publishing Limited and CRC Press LLC, pp 247–267
Nishinari K, Takemasa M, Zhang H, Takahashi R (2007) Storage plant polysaccharides: xyloglucans, galactomannans, glucomannans. In: Kamerling JP (ed) Comprehensive glycoscience from chemistry to systems biology, vol 2, chap 2.19. Elsevier, pp 613–652. https://doi.org/10.1016/b978-044451967-2/00146-x
Pezron I, Djabourov M, Leblond J (1991) Conformation of gelatin chains in aqueous solutions: 1. A light and small-angle neutron scattering study. Polymer 32(17):3201–3210. https://doi.org/10.1016/0032-3861(91)90143-7
Picone P, Sabatino MA, Ajovalasit A, Giacomazza D, Dispenza C, Di Carlo M (2019) Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application. Int J Biol Macromol 121:784–795. https://doi.org/10.1016/j.ijbiomac.2018.10.078
Piqué N, Gómez-Guillén MC, Montero MP (2018) Xyloglucan, a plant polymer with barrier protective properties over the mucous membranes: an overview. Int J Mol Sci 19(3):673–692. https://doi.org/10.3390/ijms19030673
Porod G (1982) General theory. In: Glatter O, Kratky O (eds) Small angle X-ray scattering. Academic Press, London, pp 32–35
Pusey PN, Van Megen W (1989) Dynamic light scattering by non-ergodic media. Physica A Stat Mech Appl 157:705–741. https://doi.org/10.1016/0378-4371(89)90063-0
Rodd AB, Dunstan DE, Boger DV, Schmidt J, Burchard W (2001) Heterodyne and nonergodic approach to dynamic light scattering of polymer gels: aqueous xanthan in the presence of metal ions (aluminum(III)). Macromolecules 34(10):3339–3352. https://doi.org/10.1021/ma001706g
Taylor IEP, Atkins EDT (1985) X-ray diffraction studies on the xyloglucan from tamarind (Tamarindus indica) seed. FEBS Lett 181:300–302. https://doi.org/10.1016/0014-5793(85)80280-5
Weast RC, Astle MJ, Beyer WH (1984) CRC handbook of chemistry and physics, 65th edn. CRC Press, Boca Raton
Wientjes RHW, Duits MHG, Jongschaap RJJ, Mellema J (2000) Linear rheology of guar gum solutions. Macromolecules 33:9594–9605. https://doi.org/10.1021/ma001065p
Yamanaka S, Yuguchi Y, Urakawa H, Kajiwara K, Shirakawa M, Yamatoya K (2000) Gelation of tamarind seed polysaccharide xyloglucan in the presence of ethanol. Food Hydrocolloids 14:125–128. https://doi.org/10.1016/S0268-005X(99)00057-0
Yamatoya K, Shirakawa M, Kazutami K, Suzuki J, Baba O (1997) Hypolipidemic effects of hydrolyzed xyloglucan. Macromol Symp 120:231–236. https://doi.org/10.1002/masy.19971200123
Yuguchi Y, Kumagai T, Wu M, Hirotsu T, Hosokawa J (2004) Gelation of xyloglucan in water/alcohol systems. Cellulose 11:203–208
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dispenza, C., Todaro, S., Sabatino, M.A. et al. Multi-scale structural analysis of xyloglucan colloidal dispersions and hydro-alcoholic gels. Cellulose 27, 3025–3035 (2020). https://doi.org/10.1007/s10570-020-03004-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-020-03004-0