[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

As an emerging cellulosic nanomaterial, microfibrillated cellulose (MFC) and nanofibrillated cellulose (NFC) have shown enormous potential in the forest products industry. The forest products industry and academia are working together to realise the possibilities of commercializing MFC and NFC. However, there are still needs to improve the processing, characterisation and material properties of nanocellulose in order to realise its full potential. The annual number of research publications and patents on nanocellulose with respect to manufacturing, properties and applications is now up in the thousands, so it is of the utmost importance to review articles that endeavour to research on this explosive topic of cellulose nanomaterials. This review examines the past and current situation of wood-based MFC and NFC in relation to its processing and applications relating to papermaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Davoudpour Y, Islam MdN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    Article  CAS  Google Scholar 

  • Abitbol T, Marway H, Cranston E (2014) Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord Pulp Pap Res J 29(1):46–57

    Article  CAS  Google Scholar 

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475

    Article  CAS  Google Scholar 

  • Agarwal U (2014) On the cellulose supramolecular structure in various cellulose-I CNCs. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BC

  • Ahola S, Turon X, Österberg M, Laine J, Rojas OJ (2008a) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24(20):11592–11599

    Article  CAS  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9(4):1273–1282

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    Article  CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665–677

    Article  CAS  Google Scholar 

  • Ankerfors M (2012) Microfibrillated cellulose: energy-efficient preparation techniques and key properties. Licentiate thesis in pulp and paper chemistry and technology. Innventia and Royal Institute of Technology, Stockholm

  • Ankerfors M, Lindström T (2009) Method for providing nanocellulose involving modifying cellulose fibers. US patent application, 20110036522

  • Ankerfors M, Duker E, Lindström T (2013a) Topo-chemical modification of fibres by grafting of carboxymethyl cellulose in pilot scale. Nord Pulp Pap Res J 28(1):6–14

    Article  CAS  Google Scholar 

  • Ankerfors M, Lindström T, Henriksson G (2013b) Method for the manufacture of microfibrillated cellulose. US patent no 8,546,558

  • Aracri E, Vidal T, Ragauskas AJ (2011) Wet strength development in sisal cellulose fibers by effect of a laccase—TEMPO treatment. Carbohydr Polym 84(4):1384–1390

    Article  CAS  Google Scholar 

  • Aracri E, Valls C, Vidal T (2012) Paper strength improvement by oxidative modification of sisal cellulose fibers with laccase–TEMPO system: influence of the process variables. Carbohydr Polym 88(3):830–837

    Article  CAS  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    Article  CAS  Google Scholar 

  • Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21(1):347–356

    Article  CAS  Google Scholar 

  • Bardet R, Reverdy C, Belgacem N, Leirset I, Syverud K, Bardet M, Bras J (2015) Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose 22:1227–1241

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268

    Article  CAS  Google Scholar 

  • Bilodeau M, Bousfield D, Luu W, Richmond F, Paradis M (2012) Potential applications of nanofibrillated cellulose in printing and writing papers. In: TAPPI international conference on nanotechnology for renewable materials, June 5–7, Montreal, QC

  • Bragd P, Van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(1–4):49–66

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169

    Article  CAS  Google Scholar 

  • Brodin FW, Theliander H (2013) A comparison of softwood and birch kraft pulp fibers as raw materials for production of TEMPO-oxidized pulp, MFC and superabsorbent foam. Cellulose 20(6):2825–2838

    Article  CAS  Google Scholar 

  • Brodin FW, Lund K, Brelid H, Theliander H (2012) Reinforced absorbent material: a cellulosic composite of TEMPO-oxidized MFC and CTMP fibres. Cellulose 19(4):1413–1423

    Article  CAS  Google Scholar 

  • Brodin FW, Gregersen ØW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29(1):156–166

    Article  CAS  Google Scholar 

  • Carlsson DO, Lindh J, Strømme M, Mihranyan A (2015) Susceptibility of Iα- and Iβ-dominated cellulose to TEMPO-mediated oxidation. Biomacromolecules 16:1643–1649

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107

    Article  CAS  Google Scholar 

  • Charfeddine MA, Roussiere F, Bloch J-F, Ridgway C, Gane PAC, Mangin PJ (2014) Impact on paper properties of z-direction structuring by the layered addition of micro-nano-fibrillated cellulose (MNFC). In: TAPPI international conference on nanotechnology for renewable materials, Vancouver, British Columbia Canada, 23–26 June

  • Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80

    Article  CAS  Google Scholar 

  • Chauhan VS, Chakrabarti SK (2012) Use of nanotechnology for high performance cellulosic and papermaking products. Cellul Chem Technol 46(5–6):389–400

    CAS  Google Scholar 

  • Chen W, Yu H, Liu Y (2011a) Preparation non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Carbohydr Polym 86(2):453–461

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011c) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115(5):2756–2762

    Article  CAS  Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G (2013) Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron 48:42–48

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G (2014). Nanocellulose as a biomaterial—characteristics and bio-applications. In: 5th recent advances in cellulose nanotechnology research seminar, Oct 28–29, Trondheim

  • Chinga-Carrasco G, Averianova N, Gibadullin M, Petrov V, Leirset I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338

    Article  CAS  Google Scholar 

  • Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nanocellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28

    Google Scholar 

  • Chun S-J, Lee SY, Doh GH, Lee S, Kim JH (2011) Preparation of ultrastrength nanopapers using cellulose nanofibrils. J Ind Eng Chem 17(3):521–526

    Article  CAS  Google Scholar 

  • Ciriminna R, Pagliaro M (2009) Industrial oxidations with organocatalyst TEMPO and its derivatives. Org Process Res Dev 14(1):245–251

    Article  CAS  Google Scholar 

  • Clelia M, Bruno J (2014) Nanocellulose/polymer multilayered thin films: tunable architectures towards tailored physical properties. Nord Pulp Pap Res J 29(1):19–30

    Article  Google Scholar 

  • Danumah C (2014) CNC characterisation: An essential step towards profiling physicochemical properties. In: TAPPI international conference on nanotechnology for renewable materials, June 23–26, Vancouver, BC

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997

    Article  CAS  Google Scholar 

  • Djafari Petroudy SR, Syverud K, Chinga-Carrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194

    Article  CAS  Google Scholar 

  • Duker E, Lindström T (2008) On the mechanisms behind the ability of CMC to enhance paper strength. Nord Pulp Pap Res J 23(1):57–64

    Article  CAS  Google Scholar 

  • Duker E, Brännvall E, Lindström T (2007) The effects of CMC attachment onto industrial and laboratory-cooked pulps. Nord Pulp Pap Res J 22(3):356–363

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Eriksen O, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Eriksson M, Pettersson G, Wågberg L (2005) Application of polymeric multilayers of starch onto wood fibres to enhance strength properties of paper. Nord Pulp Pap Res J 20(3):270–275

    Article  CAS  Google Scholar 

  • Fall A (2013) Colloidal interactions and orientation of nanocellulose particles. Doctoral thesis in fibre and polymer science. Royal Institute of Technology, Stockholm

  • Fall AB, Burman A, Wågberg L (2014) Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nord Pulp Pap Res J 29(1):176–184

    Article  CAS  Google Scholar 

  • Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem 1(39):6191–6197

    CAS  Google Scholar 

  • Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7(9):1831–1835

    Article  CAS  Google Scholar 

  • Floury J, Desrumaux A, Lardieres J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol 1(2):127–134

    Article  CAS  Google Scholar 

  • Floury J, Bellettre J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chem Eng Sci 59(4):843–853

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177

    Article  CAS  Google Scholar 

  • Gamelas JAF, Pedrosa J, Lourenco AF, Mutjé P, González I, Chinga-Carrasco G, Singh G, Ferreiraa PJ (2015) On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72:28–33

    Article  CAS  Google Scholar 

  • Gonzalez I, Boufi S, Pelach MA, Alcala M, Vilaseca F, Mutje P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7(4):5167–5180

    Article  CAS  Google Scholar 

  • Gonzalez I, Vilaseca F, Alcala M, Pelach MA, Boufi S, Mutje P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20(3):1425–1435

    Article  CAS  Google Scholar 

  • Gray D (1994) Chiral nematic ordering of polysaccharides. Carbohydr Polym 25(4):277–284

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hamilton R (2014) Using renewable nanotechnology (and other novel approaches) to improve base paper performance. AWA silicon technology seminar, March 19, Amsterdam

  • Hansen P, Sundvall Ö (2012) On-line crill sensor commercially available 2012. In: International paper physics and 8th international paper and coating chemistry conference, Stockholm, Sweden, June 10–14, 2012, poster

  • Hayes MG, Kelly AL (2003) High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. J Dairy Res 70(03):297–305

    Article  CAS  Google Scholar 

  • Heng JY, Pearse DF, Thielmann F, Lampke T, Bismarck A (2007) Methods to determine surface energies of natural fibres: a review. Compos Interfaces 14(7–9):581–604

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: Journal of applied polymer sciences. Applied polymer, symposium, vol 37, Syracuse, NY, pp 797–813

  • Hettrich K, Pinnow M, Volkert B, Passauer L, Fischer S (2014) Novel aspects of nanocellulose. Cellulose 21:2479–2488

    Article  CAS  Google Scholar 

  • Hii C, Gregersen ØW, Chinga-Carrasco G, Eriksen Ø (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nord Pulp Pap Res J 27(2):388–396

    Article  CAS  Google Scholar 

  • Hirn U, Schennach R (2015) Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Sci Rep 5(10503):1–9

    Google Scholar 

  • Ho T, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18(6):1391–1406

    Article  CAS  Google Scholar 

  • Hoeger IC, Nair SS, Ragauskas AJ, Deng Y, Rojas OJ, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818

    Article  CAS  Google Scholar 

  • Hult EL, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17(3):575–586

    Article  CAS  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59(6):449–459

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011a) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Isogai T, Saito T, Isogai A (2011b) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18(2):421–431

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81(6):1109–1112

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466

    Article  CAS  Google Scholar 

  • Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications—a review of recent developments. BioResources 7(2):2506–2552

    Article  Google Scholar 

  • Johnson DA (2014) Effects of CNF on papermaking properties. TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BC

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Josset S, Orsolini P, Siqueira G, Tejado A, Tingaut P, Zimmermann T (2014) Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord Pulp Pap Res J 29(1):167–175

    Article  CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31

    Article  CAS  Google Scholar 

  • Kangas H, Lahtinen P, Sneck A, Saariaho A-M, Laitinen O, Hellén E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nord Pulp Pap Res J 29(1):129–143

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346(1):76–85

    Article  CAS  Google Scholar 

  • Kekäläinen K, Liimatainen H, Niinimäki J (2014a) Disintegration of periodate–chlorite oxidized hardwood pulp fibres to cellulose microfibrils: kinetics and charge threshold. Cellulose 21:3691–3700

    Article  CAS  Google Scholar 

  • Kekäläinen K, Liimatainen H, Illikainen M, Maloney TC, Niinimäki J (2014b) The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer. Cellulose 21(3):1163–1174

    Article  CAS  Google Scholar 

  • Kleinebudde P, Jumaa M, El Saleh F (2000) Influence of degree of polymerization on behavior of cellulose during homogenization and extrusion/spheronization. AAPS PharmSci 2(3):18–27

    Article  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Progr Polym Sci 26(9):1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Advances in Polymer Science (Polysaccharides II), vol 205. Springer, Heidelberg, pp 49–96

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Lahtinen P, Liukkonen S, Pere J, Sneck A, Kangas H (2014) A comparative study of fibrillated fibers from different mechanical and chemical pulps. BioResources 9(2):2115–2127

    Article  CAS  Google Scholar 

  • Laine J, Lindström T, Nordmark GG, Risinger G (2002) Studies on topochemical modification of cellulosic fibres—part 2. The effect of carboxymethyl cellulose attachment on fibre swelling and paper strength. Nord Pulp Pap Res J 17(1):50–56

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  CAS  Google Scholar 

  • Lavoine N, Bras J, Desloges I (2014a) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci. doi:10.1002/APP.40106

    Google Scholar 

  • Lavoine N, Desloges I, Bras J (2014b) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537

    Article  CAS  Google Scholar 

  • Leung ACW, Lam E, Chong J, Hrapovic S, Luong JH (2013) Reinforced plastics and aerogels by nanocrystalline cellulose. J Nanopart Res 15(5):1–24

    Article  Google Scholar 

  • Li Y, Zhu H, Gu H, Dai H, Fang Z (2013) Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. J Mater Chem A 1(48):15278–15283

    Article  CAS  Google Scholar 

  • Liimatainen H, Visanko M, Sirviö JA, Hormi OE, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597

    Article  CAS  Google Scholar 

  • Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932

    Article  CAS  Google Scholar 

  • Lindström T (1992) Chemical factors affecting the behaviour of fibres during papermaking. Nord Pulp Pap Res J 4:181–192

    Article  Google Scholar 

  • Lindström T, Ankerfors M, Henriksson G (2007) Method for treating chemical pulp for manufacturing microfibrillated cellulose. PCT Int Appl. 2007-SE82; 2006-272:14

  • Lindström ME, Söderberg D, Henriksson G (2012) Single-step method for production of nano pulp by acceleration and disintegration of raw material, World patent no. WO2012/115590

  • Lindström T, Aulin C, Gimåker M, Persson T (2014) The emergence of practical nanocellulose applications for a more sustainable paper/board industry. Indian Pulp Pap Tech Assoc 26:53–61

    Google Scholar 

  • Liu DY, Sui GX, Bhattacharya D (2014) Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Compos Sci Technol 99:31–36

    Article  CAS  Google Scholar 

  • López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68(4):718–727

    Article  CAS  Google Scholar 

  • Lumiainen J (1998) Refining of chemical pulp. In: Paulapuro H (ed) Papermaking science and technology, book 8 papermaking part 1, stock preparation and wet end. Fapet Oy, Helsinki

    Google Scholar 

  • Martin-Sampedro R, Filpponen I, Hoeger IC, Zhu JY, Laine J, Rojas OJ (2012) Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils. ACS Macro Lett 1(11):1321–1325

    Article  CAS  Google Scholar 

  • Mautner A, Lee KY, Lahtinen P, Hakalahti M, Tammelin T, Li K, Bismarck A (2014) Nanopapers for organic solvent nanofiltration. Chem Commun 50(43):5778–5781

    Article  CAS  Google Scholar 

  • Miller J (2014) Nanocellulose: technology applications, and markets. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BC

  • Mishra SP, Manent AS, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose-various options utilizing ultrasound. BioResources 7(1):422–436

    CAS  Google Scholar 

  • Missoum K, Belgacem NM, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766

    Article  CAS  Google Scholar 

  • Mohlin U, Alfredsson C (1990) Fibre deformation and its implications in pulp characterization. Nord Pulp Pap Res J 4:172–179

    Article  Google Scholar 

  • Moon RJ, Martin A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Mörseburg K, Chinga-Carrasco G (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16(5):795–806

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7):1293–1297

    Article  CAS  Google Scholar 

  • Nelson K (2014) Low cost production of nanocellulose with the AVAP biorefinery technology. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BC

  • Nygårds S (2011) Nanocellulose in pigment coatings—aspects of barrier properties and printability in offset. Master’s thesis. Linkoping University, Department of Physics, Chemistry and Biology and Innventia AB, Sweden

  • Osong SH (2014) Mechanical pulp based nano-ligno-cellulose: production, characterisation and their effect on paper properties. Licentiate thesis, Mid Sweden University, ISBN: 978-91-87557-42-2

  • Osong SH, Norgren S, Engstrand P (2013) An approach to produce nano-ligno-cellulose from mechanical pulp fine materials. Nord Pulp Pap Res J 28(4):472–479

    Article  CAS  Google Scholar 

  • Osong SH, Norgren S, Engstrand P (2014a) Paper strength improvement by inclusion of nano-ligno-cellulose to chemi-thermomechanical pulp. Nord Pulp Pap Res J 29(2):309–316

    Article  CAS  Google Scholar 

  • Osong SH, Norgren S, Engstrand P, Lundberg M, Hansen P (2014b) Crill: a novel technique to characterize nano-ligno-cellulose. Nord Pulp Pap Res J 29(2):190–194

    Article  CAS  Google Scholar 

  • Osong SH, Norgren S, Engstrand P (2014c). Recent developments in nano-ligno-cellulose production and the crill characterisation technique. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BC

  • Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5(11):4640–4647

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  CAS  Google Scholar 

  • Page DH (1969) A theory for the tensile strength of paper. TAPPI 52(4):674–681

    CAS  Google Scholar 

  • Pajari H, Rautkoski H, Moilanen P (2012) Replacement of synthetic binders with nanofibrillated cellulose in board coating: pilot scale studies. In: TAPPI international conference on nanotechnology for renewable materials

  • Paquin P (1999) Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins, and polysaccharides. Int Dairy J 9(3):329–335

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013a) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z (2013b) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5):2379–2392

    Article  CAS  Google Scholar 

  • Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118

    Article  CAS  Google Scholar 

  • Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234

    Article  CAS  Google Scholar 

  • Qvintus P (2015) Cellulose nanofibrils: overcoming challenges on the development of nanocellulose-based products In: TAPPI international conference on nanotechnology for renewable materials, Atlanta, GA, pp 201–236

  • Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650

    Article  Google Scholar 

  • Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Rånby BG, Ribi E (1950) Uber den feinbau der zellulose. Experimentia 6:12–14

    Article  Google Scholar 

  • Rantanen J, Maloney TC (2013) Press dewatering and nip rewetting of paper containing nano- and microfibril cellulose. Nord Pulp Pap Res J 28(4):582–587

    Article  CAS  Google Scholar 

  • Rantanen J, Pirttiniemi J, Kuosmanen P, Maloney TC (2014) Development of a microfibrillated cellulose composite web forming method. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BC

  • Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4:165–188

    Article  CAS  Google Scholar 

  • Reddy JP, Rhim J-W (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym 110:480–488

    Article  CAS  Google Scholar 

  • Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2(2):123–134

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Dong X-M, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspension of cellulose crystallites, Phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  • Richmond F (2014) Cellulose nanofibers use in coated paper. Doctoral thesis, University of Maine

  • Richmond F, Haughwout C, Bousfield D (2014) The use of cellulose nanofibers in paper coating formulation. In: TAPPI papercon, pp 2141–2154

  • Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127–134

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2005) A novel method to improve wet strength of paper. TAPPI J 4(3):3–8

    CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638–3644

    Article  CAS  Google Scholar 

  • Shatkin JA, Wegner TH, Bilek E, Cowie J (2014) Market projections of cellulose nanomaterial-enabled products—part 1: applications. TAPPI J 13(5):9–16

    CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13(3):842–849

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  CAS  Google Scholar 

  • Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119(5):2652–2660

    Article  CAS  Google Scholar 

  • Sirviö JA, Kolehmainen A, Liimatainen H, Niinimäki J, Hormi OEO (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111

    Article  CAS  Google Scholar 

  • Steenberg B, Sandgren B, Wahren D (1960) Studies on Pulp Crill, Part 1. Suspended fibrils in paper pulp fines. Svensk Papperstidning 12:395–397

    Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219

    Article  CAS  Google Scholar 

  • Stenius P (2014). Nanocellulose technology—conclusions and perspectives 2006–2014. 5th recent advances in cellulose nanotechnology research seminar, Oct 28–29, Trondheim

  • Su J, Mosse WKJ, Sharman S, Batchelor WJ, Garnier G (2013) Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites. Cellulose 20(4):1925–1935

    Article  CAS  Google Scholar 

  • Svending P (2014) Commercial break-through in MFC processing. In: TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BC

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85

    Article  CAS  Google Scholar 

  • Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84(3):1033–1038

    Article  CAS  Google Scholar 

  • Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  • Tanaka A, Seppänen V, Houni J, Sneck A, Pirkonen P (2012) Nanocellulose characterization with mechanical fractionation. Nord Pulp Pap Res J 27(4):689–694

    Article  CAS  Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294

    Article  CAS  Google Scholar 

  • TAPPI. Proposed New TAPPI Standard: Standard terms and their definition for cellulose nanomaterial. Draft for review, WI 3021

  • Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30(1):27–32

    Article  CAS  Google Scholar 

  • Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3):831–842

    Article  CAS  Google Scholar 

  • Thiebaud M, Dumay E, Picart L, Guiraud JP, Cheftel JC (2003) High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. Int Dairy J 13(6):427–439

    Article  CAS  Google Scholar 

  • Torvinen K (2014) Binding fillers for high filler content papers by using CNF/CMF. In TAPPI international conference on nanotechnology for renewable materials, 23–26 June, Vancouver, BC

  • Torvinen K, Kouko J, Passoja S, Keränen JT, Hellén E (2014) Cellulose micro and nanofibrils as a binding material for high filler content papers. In: TAPPI Papercon, pp 733–746

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Journal of applied polymer sciences. Applied polymer, symposium (United States), ITT Rayonier Inc., Shelton, WA

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353

    Article  CAS  Google Scholar 

  • Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20:1885–1896

    Article  CAS  Google Scholar 

  • Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27(1):163–173

    Article  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795

    Article  CAS  Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113(2):1270–1275

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007a) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56(4):538–546

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007b) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources 2(3):371–388

    CAS  Google Scholar 

  • Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14(2):89–103

    Article  CAS  Google Scholar 

  • Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P (2011a) Structure of nanofibrillated cellulose layers at the o/w interface. J Colloid Interface Sci 356(1):58–62

    Article  CAS  Google Scholar 

  • Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P (2011b) Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18(2):257–270

    Article  CAS  Google Scholar 

  • Xue MD, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  Google Scholar 

  • Yoo S, Hsieh JS (2010) Enzyme-assisted preparation of fibrillated cellulose fibers and its effect on physical and mechanical properties of paper sheet composites. Ind Eng Chem Res 49(5):2161–2168

    Article  CAS  Google Scholar 

  • Zhang W, Johnson RK, Lin Z, Chandoha-Lee C, Zink-Sharp A, Renneckar S (2013) In situ generated cellulose nanoparticles to enhance the hydrophobicity of paper. Cellulose 20(6):2935–2945

    Article  CAS  Google Scholar 

  • Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26(8):2659–2668

    Article  CAS  Google Scholar 

  • Zhao H-P, Feng XQ, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90(7):073112. doi:10.1063/1.2450666

    Article  CAS  Google Scholar 

  • Zheng H (2014) Production of fibrillated cellulose materials—effects of pretreatments and refining strategy on pulp properties. School of Chemical Technology, Degree Program of Bioproducts Technology, Aalto University, Espoo

    Google Scholar 

  • Zhu H, Helander M, Moser C, Stahlkranz A, Söderberg D, Henriksson G, Lindström M (2012) A novel nano cellulose preparation method and size fraction by cross flow ultra-filtration. Curr Org Chem 16(16):1871–1875

    Article  CAS  Google Scholar 

  • Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13(7):3093–3100

    Article  CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269–287

    Article  CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This review article would not have been possible without the encouragement of Professor Herbert Sixta. Thank you for giving us the freedom to choose topics related to our research for the review manuscript. The financial support of the KK-Foundation and Mid Sweden University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinke H. Osong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osong, S.H., Norgren, S. & Engstrand, P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23, 93–123 (2016). https://doi.org/10.1007/s10570-015-0798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0798-5

Keywords

Navigation