Abstract
Fourier transform infrared (FTIR) spectroscopic data was used to classify wood samples from nine species within the Fagales and Malpighiales using a range of multivariate statistical methods. Taxonomic classification of the family Fagaceae and Betulaceae from Angiosperm Phylogenetic System Classification (APG II System) was successfully performed using supervised pattern recognition techniques. A methodology for wood sample discrimination was developed using both sapwood and heartwood samples. Ten and eight biomarkers emerged from the dataset to discriminate order and family, respectively. In the species studied FTIR in combination with multivariate analysis highlighted significant chemical differences in hemicelluloses, cellulose and guaiacyl (lignin) and shows promise as a suitable approach for wood sample classification.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Åkerholm M, Salmén L, Salme L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969. doi:10.1016/S0032-3861(00)00434-1
Anchukaitis KJ, Evans MN, Lange T et al (2008) Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Anal Chem 80:2035–2041. doi:10.1016/j.gca.2004.01.006.Analytical
Apg II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x
Barnett JR, Jeronimidis G (2003) Wood quality and its biological basis. Blackwell, Oxford, p 226
Bjarnestad S, Dahlman O (2002) Chemical compositions of hardwood and softwood pulps employing photoacoustic Fourier transform infrared spectroscopy in combination with partial least-squares analysis. Anal Chem 74:5851–5858. doi:10.1021/ac025926z
Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501. doi:10.1023/A:1021484002582
Brunner M, Eugster R, Trenka E, Bergamin-Strotz L (1996) FT-NIR spectroscopy and wood identification. Holzforschung 50:130–134. doi:10.1515/hfsg.1996.50.2.130
Callow JA, Andrews JH, Tommerup IC (2006) Advances in botanical research, vol 21. Academic Press, London, p 304
Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of Analytical Chemistry. Wiley, Chichester, pp 10815–10837
Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and wood biotechnology. Walter de Gruyter, Berlin, p 308
Gidman E, Goodacre R, Emmett B et al (2003) Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry 63:705–710. doi:10.1016/S0031-9422(03)00288-7
Gorgulu ST, Dogan M, Severcan F (2007) The characterization and differentiation of higher plants by Fourier transform infrared spectroscopy. Appl Spectrosc 61:300–308. doi:10.1366/000370207780220903
Gottlieb DM, Schultz J, Bruun SW et al (2004) Multivariate approaches in plant science. Phytochemistry 65:1531–1548. doi:10.1016/j.phytochem.2004.04.008
Hastie TJ, Tibshirani RJ, Friedman JJH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York, p 745
Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin, p 232
Hobro A, Kuligowski J, Döll M, Lendl B (2010) Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal Bioanal Chem 398:2713–2722. doi:10.1007/s00216-010-4199-1
Huang A, Zhou Q, Liu J et al (2008) Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. J Mol Struct 883–884:160–166. doi:10.1016/j.molstruc.2007.11.061
Kacuráková M, Kauráková M, Capek P et al (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203. doi:10.1016/S0144-8617(00)00151-X
Kemsley EK (1998) Discriminant analysis and class modelling of spectroscopic data. Wiley, Chichester, p 179
Kim SW, Ban SH, Chung HJ et al (2004) Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246–250. doi:10.1007/s00299-004-0811-1
Klecka WR (1980) Discriminant analysis. Sage Publications, Beverly Hills, CA, p 71
Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6:2815–2821. doi:10.1021/bm050288q
Larkin P (2011) Infrared and Raman spectroscopy; principles and spectral interpretation. Elsevier, Amsterdam, p 230
Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39:269–278. doi:10.1002/pol.1959.1203913521
Marchessault RH (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5:107–130. doi:10.1351/pac196205010107
Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59:357–378. doi:10.1002/pol.1962.1205916813
Martin JW (2007) Concise encyclopedia of the structure of materials. Elsevier, Amsterdam, p 512
McCann MC, Bush M, Milioni D et al (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57:811–821. doi:10.1016/S0031-9422(01)00144-3
Meinzer FC, Lachenbruch B, Dawson TE (2011) Size- and age-related changes in tree structure and function. Springer, Dordrecht, p 510
Mohebby B (2005) Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int Biodeterior Biodegradation 55:247–251. doi:10.1016/j.ibiod.2005.01.003
Mohebby B (2008) Application of ATR infrared spectroscopy in wood acetylation. J Agric Sci 10:253–259
Nuopponen M (2005) FT-IR and UV Raman spectroscopic studies on thermal modification of Scots pine wood and its extractable compounds. Helsinki University of Technology, Espoo, Finland
Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36:143–152. doi:10.1515/hfsg.1982.36.3.143
Pandey KK, Vuorinen T (2008) Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym Degrad Stab 93:2138–2146. doi:10.1016/j.polymdegradstab.2008.08.013
Rakotomalala R (2005) "TANAGRA : un logiciel gratuit pour l'enseignement et la recherche", in Actes de EGC'2005, RNTI-E-3, vol. 2, pp. 697–702
Rana R (2008) Correlation between anatomical/chemical wood properties and genetic markers as a means of wood certification. Dissertation, Klartext GmbH, Göttingen. ISBN: 978-3-9811503-2-2
Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2009) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44:225–242. doi:10.1007/s00226-009-0281-2
Revanappa SB, Nandini CD, Salimath PV (2010) Structural characterisation of pentosans from hemicellulose B of wheat varieties with varying chapati-making quality. Food Chem 119:27–33. doi:10.1016/j.foodchem.2009.04.064
Rhoads CA, Painter P, Given P (1987) FTIR studies of the contributions of plant polymers to coal formation. Int J Coal Geol 8:69–83. doi:10.1016/0166-5162(87)90023-1
Sandak A, Sandak J, Negri M (2010) Relationship between near-infrared (NIR) spectra and the geographical provenance of timber. Wood Sci Technol 45:35–48. doi:10.1007/s00226-010-0313-y
Shen JB, Lu HF, Peng QF et al (2008) FTIR spectra of Camellia sect. Oleifera, sect. Paracamellia, and sect. Camellia (Theaceae) with reference to their taxonomic significance. J Syst Evol 46:194–204. doi:10.3724/SP.J.1002.2008.07125
Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, Hoboken, NJ, p 502
Sjostrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, New York, p 293
Stewart D, Wilson HM, Hendra PJ, Morrison IM (1995) Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J Agric Food Chem 43:2219–2225. doi:10.1021/jf00056a047
Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, NJ, p 224
Takayama M (1997) Fourier transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination. Spectrochim Acta A 53:1621–1628. doi:10.1016/S1386-1425(97)00100-5
Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42:43–71. doi:10.1080/05704920601036707
Wang S, Wang K, Liu Q et al (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27:562–567. doi:10.1016/j.biotechadv.2009.04.010
Wellner N (1998) FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr Res 308:123–131. doi:10.1016/S0008-6215(98)00065-2
Acknowledgments
This work was supported by Europracticum IV (Leonardo da Vinci Programme). We gratefully acknowledge to the Consello Social from Universidade de Santiago de Compostela (Spain).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Carballo-Meilan, A., Goodman, A.M., Baron, M.G. et al. A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales. Cellulose 21, 261–273 (2014). https://doi.org/10.1007/s10570-013-0093-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-013-0093-2