[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies and is characterized by a unique tumor microenvironment (TME) consisting of an abundant stromal component. Many features contained with the PDAC stroma contribute to resistance to cytotoxic and immunotherapeutic regimens, as well as the propensity for this tumor to metastasize. At the cellular level, PDAC cells crosstalk with a complex mixture of non-neoplastic cell types including fibroblasts, endothelial cells, and immune cells. These intricate interactions fuel the progression and therapeutic resistance of this aggressive cancer. Moreover, data suggest the polarization of these cell types, in particular immune and fibroblast populations, dictate how PDAC tumors grow, metastasize, and respond to therapy. As a result, current research is focused on how to best target these populations to render tumors responsive to treatment. Herein, we summarize the cell populations implicated in providing a supporting role for the development and progression of PDAC. We focus on stromal fibroblasts and immune subsets that have been widely researched. We discuss factors which govern the phenotype of these populations and provide insight on how they have been targeted therapeutically. This review provides an overview of the tumor microenvironment and postulates that cellular and soluble factors within the microenvironment can be specifically targeted to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel, R. L., et al. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33.

    Google Scholar 

  2. Deshwar, A.B., et al. (2018). Diagnostic intervals and pancreatic ductal adenocarcinoma (PDAC) resectability: A single-center retrospective analysis. Ann Pancreat Cancer. 1.

  3. Ansari, D., Gustafsson, A., & Andersson, R. (2015). Update on the management of pancreatic cancer: Surgery is not enough. World Journal of Gastroenterology, 21(11), 3157–3165.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bekkali, N. L. H., & Oppong, K. W. (2017). Pancreatic ductal adenocarcinoma epidemiology and risk assessment: Could we prevent? Possibility for an early diagnosis. Endosc Ultrasound, 6(Suppl 3), S58–S61.

    PubMed  PubMed Central  Google Scholar 

  5. Conroy, T., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New England Journal of Medicine, 364(19), 1817–1825.

    Article  CAS  PubMed  Google Scholar 

  6. Grossberg, A. J., et al. (2020). Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA: A Cancer Journal for Clinicians, 70(5), 375–403.

    Google Scholar 

  7. Foley, K., et al. (2016). Current progress in immunotherapy for pancreatic cancer. Cancer Letters, 381(1), 244–251.

    Article  CAS  PubMed  Google Scholar 

  8. Pandol, S., et al. (2009). Desmoplasia of pancreatic ductal adenocarcinoma. Clinical Gastroenterology and Hepatology, 7(11 Suppl), S44–S47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tian, C., et al. (2019). Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc Natl Acad Sci U S A, 116(39), 19609–19618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watanabe, I., et al. (2003). Advanced pancreatic ductal cancer: Fibrotic focus and beta-catenin expression correlate with outcome. Pancreas, 26(4), 326–333.

    Article  CAS  PubMed  Google Scholar 

  11. Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour-host interface. Nature, 411(6835), 375–379.

    Article  CAS  PubMed  Google Scholar 

  12. Vonlaufen, A., et al. (2008). Pancreatic stellate cells and pancreatic cancer cells: An unholy alliance. Cancer Research, 68(19), 7707–7710.

    Article  CAS  PubMed  Google Scholar 

  13. Neuzillet, C., et al. (2019). Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. The Journal of Pathology, 248(1), 51–65.

    Article  CAS  PubMed  Google Scholar 

  14. Makohon-Moore, A., & Iacobuzio-Donahue, C. A. (2016). Pancreatic cancer biology and genetics from an evolutionary perspective. Nature Reviews Cancer, 16(9), 553–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, Y., et al. (2019). Ductal vs. acinar? Recent insights into identifying cell lineage of pancreatic ductal adenocarcinoma. Ann Pancreat Cancer. 2.

  16. Lee, A. Y. L., et al. (2019). Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma. Gut, 68(3), 487–498.

    Article  CAS  PubMed  Google Scholar 

  17. Guerra, C., et al. (2007). Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell, 11(3), 291–302.

    Article  CAS  PubMed  Google Scholar 

  18. Grippo, P. J., et al. (2003). Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Research, 63(9), 2016–2019.

    CAS  PubMed  Google Scholar 

  19. Korc, M. (2010). Driver mutations: A roadmap for getting close and personal in pancreatic cancer. Cancer Biology & Therapy, 10(6), 588–591.

    Article  CAS  Google Scholar 

  20. Ardito, Christine M., et al. (2012) EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 22(3), 304–317.

  21. Hingorani, S. R., et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4(6), 437–450.

    Article  CAS  PubMed  Google Scholar 

  22. Aguirre, A. J., et al. (2003). Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes & Development, 17(24), 3112–3126.

    Article  CAS  Google Scholar 

  23. Hingorani, S. R., et al. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 7(5), 469–483.

    Article  CAS  PubMed  Google Scholar 

  24. Bardeesy, N., et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes & Development, 20(22), 3130–3146.

    Article  CAS  Google Scholar 

  25. Kanda, M., et al. (2012). Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 142(4), 730–733 e9.

  26. Jones, S., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rhim, A. D., et al. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1–2), 349–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Oliveira, G., et al. (2020). An integrated meta-analysis of secretome and proteome identify potential biomarkers of pancreatic ductal adenocarcinoma. Cancers (Basel). 12(3).

  29. Schiarea, S., et al. (2010). Secretome analysis of multiple pancreatic cancer cell lines reveals perturbations of key functional networks. Journal of Proteome Research, 9(9), 4376–4392.

    Article  CAS  PubMed  Google Scholar 

  30. Marzoq, A. J., et al. (2019). Impact of the secretome of activated pancreatic stellate cells on growth and differentiation of pancreatic tumour cells. Science and Reports, 9(1), 5303.

    Article  CAS  Google Scholar 

  31. Fukasawa, M., & Korc, M. (2004). Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clinical Cancer Research, 10(10), 3327–3332.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Q., et al. (2019). Tumour cell-derived debris and IgG synergistically promote metastasis of pancreatic cancer by inducing inflammation via tumour-associated macrophages. British Journal of Cancer, 121(9), 786–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tian, C., et al. (2020). Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Research, 80(7), 1461–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sung, G. H., et al. (2018). Pancreatic-cancer-cell-derived trefoil factor 2 impairs maturation and migration of human monocyte-derived dendritic cells in vitro. Anim Cells Syst (Seoul), 22(6), 368–381.

    Article  CAS  Google Scholar 

  35. Sun, X., et al. (2021). Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut.

  36. Pausch, T. M., et al. (2020). Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Science and Reports, 10(1), 5420.

    Article  Google Scholar 

  37. Ligorio, M., et al. (2019). Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell. 178(1), 160–175 e27.

  38. Sahai, E., et al. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 20(3), 174–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, H., et al. (2020). Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. The Journal of Clinical Investigation, 130(9), 4704–4709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biffi, G., & Tuveson, D. A. (2021). Diversity and biology of cancer-associated fibroblasts. Physiological Reviews, 101(1), 147–176.

    Article  PubMed  Google Scholar 

  41. Watari, N., Hotta, Y., & Mabuchi, Y. (1982). Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anatomica Japonica, 58(4–6), 837–858.

    Article  CAS  PubMed  Google Scholar 

  42. Jennings, R. E., et al. (2015). Human pancreas development. Development, 142(18), 3126–3137.

    Article  CAS  PubMed  Google Scholar 

  43. Moir, J. A., Mann, J., & White, S. A. (2015). The role of pancreatic stellate cells in pancreatic cancer. Surgical Oncology, 24(3), 232–238.

    Article  PubMed  Google Scholar 

  44. Miyazaki, Y., et al. (2020). Adipose-derived mesenchymal stem cells differentiate into pancreatic cancer-associated fibroblasts in vitro. FEBS Open Bio, 10(11), 2268–2281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyazaki, Y., et al. (2021). Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Science and Reports, 11(1), 4690.

    Article  CAS  Google Scholar 

  46. Iwamoto, C., et al. (2021). Bone marrow-derived macrophages converted into cancer-associated fibroblast-like cells promote pancreatic cancer progression. Cancer Letters, 512, 15–27.

    Article  CAS  PubMed  Google Scholar 

  47. Saito, K., et al. (2018). Stromal mesenchymal stem cells facilitate pancreatic cancer progression by regulating specific secretory molecules through mutual cellular interaction. Journal of Cancer, 9(16), 2916–2929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Helms, E., Onate, M. K., & Sherman, M. H. (2020). Fibroblast heterogeneity in the pancreatic tumor microenvironment. Cancer Discovery, 10(5), 648–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garcia, P. E., et al. (2020). Differential contribution of pancreatic fibroblast subsets to the pancreatic cancer stroma. Cellular and Molecular Gastroenterology and Hepatology, 10(3), 581–599.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Garcia, P.E., et al. (2020). Pancreatic fibroblast heterogeneity: From development to cancer. Cells. 9(11).

  51. Dominguez, C. X., et al. (2020). Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discovery, 10(2), 232–253.

    Article  CAS  PubMed  Google Scholar 

  52. Elyada, E., et al. (2019). Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discovery, 9(8), 1102–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rider, P., et al. (2011). IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. The Journal of Immunology, 187(9), 4835–4843.

    Article  CAS  PubMed  Google Scholar 

  54. Periasamy, S., & Harton, J. A. (2018). Interleukin 1alpha (IL-1alpha) promotes pathogenic immature myeloid cells and IL-1beta favors protective mature myeloid cells during acute lung infection. Journal of Infectious Diseases, 217(9), 1481–1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ohlund, D., Elyada, E., & Tuveson, D. (2014). Fibroblast heterogeneity in the cancer wound. Journal of Experimental Medicine, 211(8), 1503–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vennin, C., et al. (2019). CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 10(1), 3637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cazet, A. S., et al. (2018). Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nature Communications, 9(1), 2897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Xu, Z., et al. (2010). Role of pancreatic stellate cells in pancreatic cancer metastasis. American Journal of Pathology, 177(5), 2585–2596.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vonlaufen, A., et al. (2008). Pancreatic stellate cells: Partners in crime with pancreatic cancer cells. Cancer Research, 68(7), 2085–2093.

    Article  CAS  PubMed  Google Scholar 

  60. Bailey, J. M., et al. (2008). Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clinical Cancer Research, 14(19), 5995–6004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Diop-Frimpong, B., et al. (2011). Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A, 108(7), 2909–2914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jacobetz, M. A., et al. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62(1), 112–120.

    Article  CAS  PubMed  Google Scholar 

  63. Olive, K. P., et al. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324(5933), 1457–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Provenzano, P. P., et al. (2012). Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 21(3), 418–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feig, C., et al. (2013). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A, 110(50), 20212–20217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ozdemir, B. C., et al. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25(6), 719–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rhim, A. D., et al. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25(6), 735–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bilici, A. (2014). Prognostic factors related with survival in patients with pancreatic adenocarcinoma. World Journal of Gastroenterology, 20(31), 10802–10812.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Haeberle, L., & Esposito, I. (2019). Pathology of pancreatic cancer. Transl Gastroenterol Hepatol, 4, 50.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Erkan, M., et al. (2008). The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clinical Gastroenterology and Hepatology, 6(10), 1155–1161.

    Article  PubMed  Google Scholar 

  71. Weniger, M., Honselmann, K. C., & Liss, A. S. (2018). The extracellular matrix and pancreatic cancer: A complex relationship. Cancers (Basel). 10(9).

  72. Naba, A., Clauser K. R., & Hynes, R. O.  (2015). Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J Vis Exp (101):e53057.

  73. Tian, C., et al. (2021). Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells. Nature Communications, 12(1), 2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Imamura, T., et al. (1995). Quantitative analysis of collagen and collagen subtypes I, III, and V in human pancreatic cancer, tumor-associated chronic pancreatitis, and alcoholic chronic pancreatitis. Pancreas, 11(4), 357–364.

    Article  CAS  PubMed  Google Scholar 

  75. Mollenhauer, J., Roether, I., & Kern, H. F. (1987). Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro. Pancreas, 2(1), 14–24.

    Article  CAS  PubMed  Google Scholar 

  76. Olivares, O., et al. (2017). Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nature Communications, 8, 16031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu, J., et al. (2014). Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway. British Journal of Cancer, 110(2), 409–420.

    Article  CAS  PubMed  Google Scholar 

  78. Begum, A., et al. (2017). The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma. PLoS One. 12(7):e0180181.

  79. Shintani, Y., et al. (2008). Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. Journal of Cell Biology, 180(6), 1277–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nakajima, S., et al. (2004). N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clinical Cancer Research, 10(12 Pt 1), 4125–4133.

    Article  CAS  PubMed  Google Scholar 

  81. Bronte, V., et al. (2016). Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 7, 12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Noy, R., & Pollard, J. W. (2014). Tumor-associated macrophages: From mechanisms to therapy. Immunity, 41(1), 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, S., Liu, Q., & Liao, Q. (2020). Tumor-associated macrophages in pancreatic ductal adenocarcinoma: Origin, polarization, function, and reprogramming. Front Cell Dev Biol. 8: p. 607209.

  84. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep, 2014. 6: p. 13.

  85. Nahrendorf, M., & Swirski, F. K. (2016). Abandoning M1/M2 for a network model of macrophage function. Circulation Research, 119(3), 414–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu, Y., et al. (2017). Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity, 47(2), 323–338 e6.

  87. Liu, Q., et al. (2016). Atorvastatin (Lipitor) attenuates the effects of aspirin on pancreatic cancerogenesis and the chemotherapeutic efficacy of gemcitabine on pancreatic cancer by promoting M2 polarized tumor associated macrophages. Journal of Experimental & Clinical Cancer Research, 35, 33.

    Article  CAS  Google Scholar 

  88. Bishehsari, F., et al. (2018). KRAS mutation and epithelial-macrophage interplay in pancreatic neoplastic transformation. International Journal of Cancer, 143(8), 1994–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gruber, R., et al. (2016). YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology, 151(3), 526–539.

    Article  CAS  PubMed  Google Scholar 

  90. Principe, D. R., et al. (2016). TGFbeta signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancer Research, 76(9), 2525–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eriksson, E., et al. (2019). IL-6 signaling blockade during CD40-mediated immune activation favors antitumor factors by reducing TGF-beta, collagen type I, and PD-L1/PD-1. The Journal of Immunology, 202(3), 787–798.

    Article  CAS  PubMed  Google Scholar 

  92. Rahn, S., et al. (2019). POLE Score: A comprehensive profiling of programmed death 1 ligand 1 expression in pancreatic ductal adenocarcinoma. Oncotarget, 10(16), 1572–1588.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gordon, S. R., et al. (2017). PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 545(7655), 495–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Seo, Y. D., & Pillarisetty, V. G. (2017). T-cell programming in pancreatic adenocarcinoma: A review. Cancer Gene Therapy, 24(3), 106–113.

    Article  CAS  PubMed  Google Scholar 

  95. Wang, W., et al., RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell, 2018. 34(5): p. 757–774 e7.

  96. Gabrilovich, D. I. (2017). Myeloid-derived suppressor cells. Cancer Immunology Research, 5(1), 3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bayne, L. J., et al. (2012). Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell, 21(6), 822–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao, F., et al. (2009). Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology, 128(1), 141–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Panni, R. Z., et al. (2014). Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunology, Immunotherapy, 63(5), 513–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karakhanova, S., et al., Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: Importance of myeloid-derived suppressor cells. Oncoimmunology, 2015. 4(4): p. e998519.

  101. Vincent, J., et al. (2010). 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Research, 70(8), 3052–3061.

    Article  CAS  PubMed  Google Scholar 

  102. Stromnes, I. M., et al. (2014). Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut, 63(11), 1769–1781.

    Article  CAS  PubMed  Google Scholar 

  103. Steele, C. W., et al. (2016). CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), 832–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cappello, P., et al., Anti-alpha-enolase antibody limits the invasion of myeloid-derived suppressor cells and attenuates their restraining effector T cell response. Oncoimmunology, 2016. 5(5): p. e1112940.

  105. Carstens, J. L., et al. (2017). Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nature Communications, 8, 15095.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Masugi, Y., et al. (2019). Characterization of spatial distribution of tumor-infiltrating CD8(+) T cells refines their prognostic utility for pancreatic cancer survival. Modern Pathology, 32(10), 1495–1507.

    Article  CAS  PubMed  Google Scholar 

  107. Liudahl, S.M., et al., Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: Phenotypic and spatial features associated with clinical outcome. Cancer Discov, 2021.

  108. Bear, A. S., Vonderheide, R. H., & O’Hara, M. H. (2020). Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell, 38(6), 788–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pylayeva-Gupta, Y., et al. (2016). IL35-producing b cells promote the development of pancreatic neoplasia. Cancer Discovery, 6(3), 247–255.

    Article  CAS  PubMed  Google Scholar 

  110. Lee, K. E., et al. (2016). Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discovery, 6(3), 256–269.

    Article  CAS  PubMed  Google Scholar 

  111. Daley, D., et al., Gammadelta T cells support pancreatic oncogenesis by restraining alphabeta T cell activation. Cell, 2016. 166(6): p. 1485–1499 e15.

  112. Moral, J. A., et al. (2020). ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature, 579(7797), 130–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lim, S. A., et al. (2019). Defective localization with impaired tumor cytotoxicity contributes to the immune escape of NK cells in pancreatic cancer patients. Frontiers in Immunology, 10, 496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Marcon, F., et al. (2020). NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncoimmunology, 9(1), 1845424.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Foucher, E. D., et al. (2018). Pancreatic ductal adenocarcinoma: A strong imbalance of good and bad immunological cops in the tumor microenvironment. Frontiers in Immunology, 9, 1044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Blando, J., et al. (2019). Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc Natl Acad Sci U S A, 116(5), 1692–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Steele, N. G., et al. (2020). Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nature Cancer, 1(11), 1097–1112.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhang, Y., et al. (2017). Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut, 66(1), 124–136.

    Article  CAS  PubMed  Google Scholar 

  119. Helm, O., et al. (2014). Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. International Journal of Cancer, 135(4), 843–861.

    Article  CAS  PubMed  Google Scholar 

  120. Joyce, J. A., & Fearon, D. T. (2015). T cell exclusion, immune privilege, and the tumor microenvironment. Science, 348(6230), 74–80.

    Article  CAS  PubMed  Google Scholar 

  121. Yan, R., et al., Immunogenicity and the CXCL12-coat control T cell accumulation in murine pancreatic cancer. The Journal of Immunology, 2020. 204(1 Supplement): p. 90.11.

  122. Hegde, S., et al., Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell, 2020. 37(3): p. 289–307 e9.

  123. Vonderheide, R.H. and A.S. Bear, Tumor-derived myeloid cell chemoattractants and T cell exclusion in pancreatic cancer. Front Immunol, 2020. 11: p. 605619.

  124. Bhattacharjee, S., et al., Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Invest, 2021. 131(11).

  125. Liu, C., et al. (2017). Circulating regulatory T cell subsets predict overall survival of patients with unresectable pancreatic cancer. International Journal of Oncology, 51(2), 686–694.

    Article  CAS  PubMed  Google Scholar 

  126. Siret, C., et al. (2019). Deciphering the crosstalk between myeloid-derived suppressor cells and regulatory T cells in pancreatic ductal adenocarcinoma. Frontiers in Immunology, 10, 3070.

    Article  CAS  PubMed  Google Scholar 

  127. Wang, X., et al. (2017). Cancer-FOXP3 directly activated CCL5 to recruit FOXP3(+)Treg cells in pancreatic ductal adenocarcinoma. Oncogene, 36(21), 3048–3058.

    Article  CAS  PubMed  Google Scholar 

  128. Wang, X., et al. (2020). PD-L1 is a direct target of cancer-FOXP3 in pancreatic ductal adenocarcinoma (PDAC), and combined immunotherapy with antibodies against PD-L1 and CCL5 is effective in the treatment of PDAC. Signal Transduction and Targeted Therapy, 5(1), 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, Y., et al. (2020). Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis. Cancer Discovery, 10(3), 422–439.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang, Y., et al. (2014). CD4+ T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunology Research, 2(5), 423–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McAllister, F., et al. (2014). Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell, 25(5), 621–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Barilla, R. M., et al. (2019). Specialized dendritic cells induce tumor-promoting IL-10+IL-17+ FoxP3neg regulatory CD4+ T cells in pancreatic carcinoma. Nature Communications, 10(1), 1424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Roghanian, A., et al. (2016). B cells promote pancreatic tumorigenesis. Cancer Discovery, 6(3), 230–232.

    Article  CAS  PubMed  Google Scholar 

  134. Mirlekar, B., et al. (2020). B cell-derived IL35 drives STAT3-dependent CD8(+) T-cell exclusion in pancreatic cancer. Cancer Immunology Research, 8(3), 292–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Takahashi, R., et al. (2021). Interleukin-1beta-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune suppression. Gut, 70(2), 330–341.

    CAS  PubMed  Google Scholar 

  136. Gunderson, A. J., et al. (2016). Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discovery, 6(3), 270–285.

    Article  CAS  PubMed  Google Scholar 

  137. Minici, C., et al. (2020). B lymphocytes contribute to stromal reaction in pancreatic ductal adenocarcinoma. Oncoimmunology, 9(1), 1794359.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Castino, G.F., et al., Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology, 2016. 5(4): p. e1085147.

  139. Spear, S., et al. (2019). Discrepancies in the tumor microenvironment of spontaneous and orthotopic murine models of pancreatic cancer uncover a new immunostimulatory phenotype for B cells. Frontiers in Immunology, 10, 542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chabab, G., et al. (2020). Pro-tumor gammadelta T cells in human cancer: Polarization, mechanisms of action, and implications for therapy. Frontiers in Immunology, 11, 2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mattiola, I., & Diefenbach, A. (2020). Enabling anti-tumor immunity by unleashing ILC2. Cell Research, 30(6), 461–462.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Jeon, S., et al., Multiple defects in NK cells of surgically resectable pancreatic cancer patients can be reversed by <em>ex-vivo</em> stimulation. The Journal of Immunology, 2018. 200(1 Supplement): p. 124.10.

  143. van Mackelenbergh, M.G., et al., Clinical trials targeting the stroma in pancreatic cancer: A systematic review and meta-analysis. Cancers (Basel), 2019. 11(5).

  144. Fan, J. Q., et al. (2020). Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Molecular Cancer, 19(1), 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pereira, B. A., et al. (2019). CAF subpopulations: A new reservoir of stromal targets in pancreatic cancer. Trends Cancer, 5(11), 724–741.

    Article  PubMed  Google Scholar 

  146. Amakye, D., Jagani, Z., & Dorsch, M. (2013). Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nature Medicine, 19(11), 1410–1422.

    Article  CAS  PubMed  Google Scholar 

  147. Madden, J., Infinity reports update from phase 2 study of saridegib plus gemcitabine in patients with metastatic pancreatic cancer. Infinity Pharmaceuticals, 2012.

  148. Ko, A. H., et al. (2016). A phase i study of FOLFIRINOX Plus IPI-926, a Hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas, 45(3), 370–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pitarresi, J.R., et al., Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Sci Alliance, 2018. 1(5): p. e201800190.

  150. Hingorani, S. R., et al. (2018). HALO 202: Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. Journal of Clinical Oncology, 36(4), 359–366.

    Article  CAS  PubMed  Google Scholar 

  151. Hong, T. S., et al. (2014). A phase 1/2 and biomarker study of preoperative short course chemoradiation with proton beam therapy and capecitabine followed by early surgery for resectable pancreatic ductal adenocarcinoma. International Journal of Radiation Oncology Biology Physics, 89(4), 830–838.

    Article  CAS  PubMed  Google Scholar 

  152. Firuzi, O., et al., Role of c-MET inhibitors in overcoming drug resistance in spheroid models of primary human pancreatic cancer and stellate cells. Cancers (Basel), 2019. 11(5).

  153. Rucki, A. A., et al. (2017). Dual inhibition of hedgehog and c-met pathways for pancreatic cancer treatment. Molecular Cancer Therapeutics, 16(11), 2399–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Noguchi, K., et al. (2018). c-Met affects gemcitabine resistance during carcinogenesis in a mouse model of pancreatic cancer. Oncology Letters, 16(2), 1892–1898.

    PubMed  PubMed Central  Google Scholar 

  155. Turk, A.A., et al., A phase II trial of cabozantinib and erlotinib for patients with EGFR and c-Met co-expressing metastatic pancreatic adenocarcinoma (PDAC). Journal of Clinical Oncology, 2020. 38(15_suppl): p. e16764-e16764.

  156. Jin, Y., et al., A novel c-MET-targeting antibody-drug conjugate for pancreatic cancer. Front Oncol, 2021. 11: p. 634881.

  157. Gorchs, L., et al. (2020). The vitamin D analogue calcipotriol promotes an anti-tumorigenic phenotype of human pancreatic CAFs but reduces T cell mediated immunity. Science and Reports, 10(1), 17444.

    Article  CAS  Google Scholar 

  158. Li, Z., et al. (2015). Vitamin D receptor signaling and pancreatic cancer cell EMT. Current Pharmaceutical Design, 21(10), 1262–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Porter, R.L., et al., Epithelial to mesenchymal plasticity and differential response to therapies in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A, 2019.

  160. Kalbasi, A., et al. (2017). Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clinical Cancer Research, 23(1), 137–148.

    Article  CAS  PubMed  Google Scholar 

  161. Noel, M., et al. (2020). Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Investigational New Drugs, 38(3), 800–811.

    Article  CAS  PubMed  Google Scholar 

  162. Nywening, T. M., et al. (2016). Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. The lancet Oncology, 17(5), 651–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sano, M., et al. (2019). Blocking CXCLs-CXCR2 axis in tumor-stromal interactions contributes to survival in a mouse model of pancreatic ductal adenocarcinoma through reduced cell invasion/migration and a shift of immune-inflammatory microenvironment. Oncogenesis, 8(2), 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nywening, T. M., et al. (2018). Targeting both tumour-associated CXCR2<sup>+</sup> neutrophils and CCR2<sup>+</sup> macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut, 67(6), 1112–1123.

    Article  CAS  PubMed  Google Scholar 

  165. Ruffolo, L.I., et al., Antibody blockade of semaphorin 4D to sensitize pancreatic cancer to immune checkpoint blockade. Journal of Clinical Oncology, 2020. 38(5_suppl): p. 26–26.

  166. Lesinski, G.B., et al., Abstract CT016: Integrated biomarker trials of VX15/2503 (pepinemab) in combination with checkpoint inhibitors in window of opportunity studies in solid tumors. Cancer Research, 2019. 79(13 Supplement): p. CT016.

  167. Vonderheide, R. H., et al. (2013). CD40 immunotherapy for pancreatic cancer. Cancer Immunology, Immunotherapy, 62(5), 949–954.

    Article  CAS  PubMed  Google Scholar 

  168. Vonderheide, R. H. (2018). The immune revolution: A case for priming, not checkpoint. Cancer Cell, 33(4), 563–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vonderheide, R. H. (2020). CD40 agonist antibodies in cancer immunotherapy. Annual Review of Medicine, 71, 47–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the patients and families who continue to participate in and support clinical research. Further, the authors recognize all members of the Lesinski lab as important contributors to this manuscript through fruitful discussions regarding the intricacies of the PDAC TME. BioRender was used to generate all figures present in this work.

Funding

This work was supported by NIH grants R01CA208253, R01CA228406, and P30CA138292. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Lesinski.

Ethics declarations

Conflict of interest

Dr. Lesinski has consulted for ProDa Biotech, LLC, and received compensation. Dr. Lesinski has received research funding through a sponsored research agreement between Emory University and Merck and Co., Bristol-Myers Squibb, Boerhinger-Ingelheim, and Vaccinex. Dr. Herting and Mr. Karpovsky have no conflicts to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herting, C.J., Karpovsky, I. & Lesinski, G.B. The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions. Cancer Metastasis Rev 40, 675–689 (2021). https://doi.org/10.1007/s10555-021-09988-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-021-09988-w

Keywords

Navigation