[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A stabilized Gauge-Uzawa discontinuous Galerkin method for the magneto-hydrodynamic equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop a stabilized Gauge-Uzawa discontinuous Galerkin (DG) method with second-order time-accurate for the incompressible magnetohydrodynamic equations. The proposed scheme here possess the properties of the linearity, fully decoupling and unconditional energy stability, which is employed by combining a second-order projection-type Gauge-Uzawa method for the Navier–Stokes equations, a stabilization strategy for Maxwell’s equations, the implicit-explicit frameworks for the nonlinear coupling terms and the interior penalty DG method for the spatial approximation. We rigorously prove the unique solvability, unconditional energy stability and optimal error estimates of the proposed scheme. Finally, several numerical examples are provided to demonstrate the accuracy, stability, and efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adler, J., Benson, T., Cyr, E., MacLachlan, S., Tuminaro, R.: Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics. SIAM J. Sci. Comput. 38(1), B1–B24 (2016)

    MathSciNet  Google Scholar 

  2. An, R., Li, Y.: Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations. Appl. Numer. Math. 112, 167–181 (2017)

    MathSciNet  Google Scholar 

  3. An, R., Zhou, C.: Error analysis of a fractional-step method for magneto hydrodynamics equations. J. Comput. Appl. Math. 313, 168–184 (2017)

    MathSciNet  Google Scholar 

  4. An, R., Zhang, C., Li, Y.: Temporal convergence analysis of an energy preserving projection method for a coupled magnetohydrodynamics equations. J. Comput. Appl. Math. 386, 113236 (2021)

    MathSciNet  Google Scholar 

  5. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    MathSciNet  Google Scholar 

  6. Badia, S., Codina, R., Planas, R.: On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys. 234, 399–416 (2013)

    MathSciNet  Google Scholar 

  7. Baty, H., Keppens, R., Comte, P.: The two-dimensional magnetohydrodynamic Kelvin-Helmholtz instability: compressibility and large-scale coalescence effects. Phys. Plasmas. 10, 4661–4674 (2003)

    MathSciNet  Google Scholar 

  8. Bernardi, C., Maday, Y.: Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9, 395–414 (1999)

    MathSciNet  Google Scholar 

  9. Chaabane, N., Girault, V., Puelz, C., Rivière, B.: Convergence of IPDG for coupled time-dependent Navier–Stokes and Darcy equations. J. Comput. Appl. Math. 324, 25–48 (2017)

    MathSciNet  Google Scholar 

  10. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    Google Scholar 

  11. Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations. Sci. China Math. 59, 1495–1510 (2016)

    MathSciNet  Google Scholar 

  12. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    MathSciNet  Google Scholar 

  13. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002)

    MathSciNet  Google Scholar 

  14. Cockburn, B., Karniadakis, G., Shu, C.: The Development of Discontinuous Galerkin Methods. Springer, UK (2000)

    Google Scholar 

  15. Cyr, E., Shadid, J., Tuminaro, R., Pawlowski, R., Chacón, L.: A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35, B701–B730 (2013)

    MathSciNet  Google Scholar 

  16. Dallas, V., Alexakis, A.: Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality. Phys. Rev. E. 88(6), 063017 (2013)

    Google Scholar 

  17. Dunavant, D.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)

    MathSciNet  Google Scholar 

  18. Fasoli, A., Brunner, S., Cooper, W., Graves, J., Ricci, P., Sauter, O., Villard, L.: Computational challenges in magnetic-confinement fusion physics. Nature Phys. 12, 411–423 (2016)

    Google Scholar 

  19. Gerbeau, J.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)

    MathSciNet  Google Scholar 

  20. Gerbeau, J., Bris, C., Leliévre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)

    Google Scholar 

  21. George, K., Spencer, S.: Spectral/HP Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)

    Google Scholar 

  22. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)

    MathSciNet  Google Scholar 

  23. Girault, V., Rivière, B., Wheeler, M.: A splitting method using discontinuous Galerkin for the transient incompressible Navier–Stokes equations. ESAIM: M2AN 39(6), 1115–1147 (2005)

    MathSciNet  Google Scholar 

  24. Goedbloed, H., Poedts, S.: Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge, England (2004)

    Google Scholar 

  25. Grotea, M., Schneebelia, A.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: Optimal \(L^2\)-norm error estimates. IMA J. Numer. Anal. 28, 440–468 (2008)

    MathSciNet  Google Scholar 

  26. Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompresible magnetohydrodynamics. Math. Comp. 56, 523–563 (1991)

    MathSciNet  Google Scholar 

  27. Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput. 40, 281–314 (2009)

    MathSciNet  Google Scholar 

  28. Hughes, W.F., Young, F.J.: The electromagnetodynamics of fluids. Wiley, New Jersey (1966)

    Google Scholar 

  29. Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows. Numer. Methods Partial Differ. Equ. 30(4), 1083–1102 (2014)

    MathSciNet  Google Scholar 

  30. Lee, E., Brachet, M., Pouquet, A., Mininni, P., Rosenberg, D.: Lack of universality in decaying magnetohydrodynamic turbulence. Phys. Rev. E. 81, 016318 (2010)

    Google Scholar 

  31. Li, Y., An, R.: Temporal error analysis of Euler semi-implicit scheme for the magnetohydrodynamics equations with variable density. Appl. Numer. Math. 166, 146–167 (2021)

    MathSciNet  Google Scholar 

  32. Li, Y., Ma, Y., An, R.: Decoupled, semi-implicit scheme for a coupled system arising in magnetohydrodynamics problem. Appl. Numer. Math. 127, 142–163 (2018)

    MathSciNet  Google Scholar 

  33. Li, Y., Zhai, C.: Unconditionally optimal convergence analysis of second-order BDF Galerkin finite element scheme for a hybrid MHD system. Adv. Comput. Math. 46(5), 75 (2020)

    MathSciNet  Google Scholar 

  34. Li, F., Shu, C.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22, 413–442 (2005)

    MathSciNet  Google Scholar 

  35. Liu, C., Rivière, B.: A priori error analysis of a discontinuous Galerkin method for Cahn–Hilliard–Navier–Stokes equations. CSIAM Trans. Appl. Math. 1(1), 104–141 (2020)

    Google Scholar 

  36. Liu, J., Pego, R.: Stable discretization of magnetohydrodynamics in bounded domains. Commun. Math. Sci. 8, 235–251 (2010)

    MathSciNet  Google Scholar 

  37. Masri, R., Liu, C., Rivière, B.: A discontinuous Galerkin pressure correction scheme for the incompressible Navier–Stokes equations: stability and convergence. Math. Comput. 91(336), 1625–1654 (2022)

    MathSciNet  Google Scholar 

  38. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Google Scholar 

  39. Moreau, R.: Magnetohydrodynamics. Kluwer Academic Publishers, New York (1990)

    Google Scholar 

  40. Nédélec, J.C.: A new family of mixed finite elements in \({\mathbb{R}}^3\). Numer. Math. 50(1), 57–81 (1986)

    MathSciNet  Google Scholar 

  41. Nédélec, J.C.: Mixed finite elements in \(R^3\). Numer. Math. 35, 315–341 (1980)

    MathSciNet  Google Scholar 

  42. Nacev, A., Beni, C., Bruno, O., Shapiro, B.: The behaviors of ferro-magnetic Nano-particles in and around blood vessels under applied magnetic fields. J. Magn. Magn. Mater. 323(6), 651–668 (2011)

    Google Scholar 

  43. Nochetto, R.H., Pyo, J.H.: A finite element Gauge-Uzawa method. Part I: The Navier–Stokes equations. SIAM J. Numer. Anal. 43, 1043–1068 (2005)

    MathSciNet  Google Scholar 

  44. Nochetto, R.H., Pyo, J.H.: A finite element Gauge-Uzawa method. Part II: Boussinesq Equations. Math. Mod. Meth. Appl. S. 16, 1599–1626 (2006)

    Google Scholar 

  45. Pietro, D., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79(271), 1303–1330 (2010)

    MathSciNet  Google Scholar 

  46. Pyo, J.H.: Error estimates for the second order semi-discrete stabilized Gauge-Uzawa method for the Navier–Stokes equations. Int. J. Numer. Anal. Model. 10(1), 24–41 (2013)

    MathSciNet  Google Scholar 

  47. Pyo, J.H., Shen, J.: Gauge Uzawa methods for incompressible flows with variable density. J. Comput. Phys. 211, 181–197 (2007)

    MathSciNet  Google Scholar 

  48. Qiu, W., Shi, K.: A mixed DG method and an HDG method for incompressible magnetohydrodynamics. IMA J. Numer. Anal. 40, 1356–1389 (2019)

    MathSciNet  Google Scholar 

  49. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    Google Scholar 

  50. Ryu, D., Jones, T., Frank, A.: The magnetohydrodynamic Kelvin-Helmholtz instability: a three-dimensional study of nonlinear evolution. Astrophys. J. 545, 475–493 (2000)

    Google Scholar 

  51. Shen, J., Yang, X.: Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B31, 743–758 (2010)

    MathSciNet  Google Scholar 

  52. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscositites. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    MathSciNet  Google Scholar 

  53. Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM: M2AN 56(3), 767–789 (2022)

    MathSciNet  Google Scholar 

  54. Wang, K., Zhang, G.: Unconditionally energy stable, splitting schemes for magnetohydrodynamic equations. Int. J. Numer. Meth. Fluids. 93, 1396–1418 (2021)

    MathSciNet  Google Scholar 

  55. Warburton, T., Karniadakis, G.: A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys. 152, 608–641 (1999)

    MathSciNet  Google Scholar 

  56. Wang, M., Zou, G., Li, J.: A rotational pressure-correction discontinuous Galerkin scheme for the Cahn–Hilliard–Darcy–Stokes system. Adv. Comput. Math. 50, 55 (2024)

    MathSciNet  Google Scholar 

  57. Wei, Y., Zou, G.: A splitting discontinuous Galerkin projection method for the magneto-hydrodynamic equations. Appl. Numer. Math. 197, 363–388 (2024)

    MathSciNet  Google Scholar 

  58. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    MathSciNet  Google Scholar 

  59. Wu, J., An, R., Li, Y.: Optimal \(H^1\) error analysis of a fractional step finite element scheme for a hybrid MHD system. J. Appl. Anal. Comput 11, 1535–1556 (2021)

    MathSciNet  Google Scholar 

  60. Yang, X., Zhang, G., He, X.: Convergence analysis of an unconditionally energy stable projection scheme for magneto-hydrodynamic equations. Appl. Numer. Math. 136, 235–256 (2019)

    MathSciNet  Google Scholar 

  61. Yang, X., Zhang, G., He, X.: On an efficient second order backward difference Newton scheme for MHD system. J. Math. Anal. Appl. 458, 676–714 (2018)

    MathSciNet  Google Scholar 

  62. Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations. I. Time discretization. Numer. Methods Partial Differ. Equ. 33(3), 956–973 (2017)

    MathSciNet  Google Scholar 

  63. Zhang, G., He, X., Yang, X.: A decoupled, linear and unconditionally energy stable scheme with finite element discretizations for magneto-hydrodynamic equations. J. Sci. Comput. 81, 1678–1711 (2019)

    MathSciNet  Google Scholar 

  64. Zhang, G., He, X., Yang, X.: Fully-decoupled, linear and unconditionally energy stable time discretization scheme for solving the magneto-hydrodynamic equations. J. Comput. Appl. Math. 369, 112636 (2020)

    MathSciNet  Google Scholar 

  65. Zhang, X., Su, H.: A decoupled, unconditionally energy-stable and structure-preserving finite element scheme for the incompressible MHD equations with magnetic-electric formulation. Comput. Math. Appl. 146, 45–59 (2023)

    MathSciNet  Google Scholar 

  66. Zhang, G., He, X., Yang, X.: A fully-decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations. J. Comput. Phys. 448, 110752 (2022)

    MathSciNet  Google Scholar 

  67. Zhang, G., Yang, M., He, Y.: Block preconditioners for energy stable schemes of magnetohydrodynamics equations. Numer. Methods Partial Differ. Equ. 39, 501–522 (2023)

    MathSciNet  Google Scholar 

  68. Zheng, Z., Zou, G., Wang, B., Zhao, W.: A fully-decoupled discontinuous Galerkin method for the nematic liquid crystal flows with SAV approach. J. Couput. Appl. Math. 429, 115027 (2023)

    MathSciNet  Google Scholar 

  69. Zou, G., Li, Z., Yang, X.: Fully discrete discontinuous Galerkin numerical scheme with second-order temporal accuracy for the hydrodynamically coupled lipid vesicle model. J. Sci. Comput. 95(5), (2023)

  70. Zou, G., Wang, B., Yang, X.: A fully-decoupled discontinuous Galerkin approximation of the Cahn–Hilliard–Brinkman–Ohta–Kawasaki tumor growth model. ESAIM: M2AN 56, 2141–2180 (2022)

    MathSciNet  Google Scholar 

  71. Zou, G., Wang, B., Yang, X.: Efficient interior penalty discontinuous Galerkin projection method with unconditional energy stability and second-order temporal accuracy for the incompressible magneto-hydrodynamic system. J. Comput. Phys. 495, 112562 (2023)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for the constructive comments and valuable suggestions which have improved the paper. Guang-an Zou is supported by the Foundation for University Youth Key Teacher of Henan Province of China (2023GGJS017) and the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (23A110006). Xiaofeng Yang is partially supported by the U.S. National Science Foundation under the grant number DMS-2012490 and DMS-2309731.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Rolf Stenberg.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Ga., Wei, Y. & Yang, X. A stabilized Gauge-Uzawa discontinuous Galerkin method for the magneto-hydrodynamic equations. Bit Numer Math 64, 40 (2024). https://doi.org/10.1007/s10543-024-01044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-024-01044-7

Keywords

Mathematics Subject Classification

Navigation