Abstract
In this paper, we develop a stabilized Gauge-Uzawa discontinuous Galerkin (DG) method with second-order time-accurate for the incompressible magnetohydrodynamic equations. The proposed scheme here possess the properties of the linearity, fully decoupling and unconditional energy stability, which is employed by combining a second-order projection-type Gauge-Uzawa method for the Navier–Stokes equations, a stabilization strategy for Maxwell’s equations, the implicit-explicit frameworks for the nonlinear coupling terms and the interior penalty DG method for the spatial approximation. We rigorously prove the unique solvability, unconditional energy stability and optimal error estimates of the proposed scheme. Finally, several numerical examples are provided to demonstrate the accuracy, stability, and efficiency of the proposed scheme.
Similar content being viewed by others
References
Adler, J., Benson, T., Cyr, E., MacLachlan, S., Tuminaro, R.: Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics. SIAM J. Sci. Comput. 38(1), B1–B24 (2016)
An, R., Li, Y.: Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations. Appl. Numer. Math. 112, 167–181 (2017)
An, R., Zhou, C.: Error analysis of a fractional-step method for magneto hydrodynamics equations. J. Comput. Appl. Math. 313, 168–184 (2017)
An, R., Zhang, C., Li, Y.: Temporal convergence analysis of an energy preserving projection method for a coupled magnetohydrodynamics equations. J. Comput. Appl. Math. 386, 113236 (2021)
Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)
Badia, S., Codina, R., Planas, R.: On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics. J. Comput. Phys. 234, 399–416 (2013)
Baty, H., Keppens, R., Comte, P.: The two-dimensional magnetohydrodynamic Kelvin-Helmholtz instability: compressibility and large-scale coalescence effects. Phys. Plasmas. 10, 4661–4674 (2003)
Bernardi, C., Maday, Y.: Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9, 395–414 (1999)
Chaabane, N., Girault, V., Puelz, C., Rivière, B.: Convergence of IPDG for coupled time-dependent Navier–Stokes and Darcy equations. J. Comput. Appl. Math. 324, 25–48 (2017)
Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)
Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations. Sci. China Math. 59, 1495–1510 (2016)
Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)
Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002)
Cockburn, B., Karniadakis, G., Shu, C.: The Development of Discontinuous Galerkin Methods. Springer, UK (2000)
Cyr, E., Shadid, J., Tuminaro, R., Pawlowski, R., Chacón, L.: A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35, B701–B730 (2013)
Dallas, V., Alexakis, A.: Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality. Phys. Rev. E. 88(6), 063017 (2013)
Dunavant, D.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)
Fasoli, A., Brunner, S., Cooper, W., Graves, J., Ricci, P., Sauter, O., Villard, L.: Computational challenges in magnetic-confinement fusion physics. Nature Phys. 12, 411–423 (2016)
Gerbeau, J.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)
Gerbeau, J., Bris, C., Leliévre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)
George, K., Spencer, S.: Spectral/HP Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)
Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47(3), 2052–2089 (2009)
Girault, V., Rivière, B., Wheeler, M.: A splitting method using discontinuous Galerkin for the transient incompressible Navier–Stokes equations. ESAIM: M2AN 39(6), 1115–1147 (2005)
Goedbloed, H., Poedts, S.: Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge, England (2004)
Grotea, M., Schneebelia, A.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: Optimal \(L^2\)-norm error estimates. IMA J. Numer. Anal. 28, 440–468 (2008)
Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompresible magnetohydrodynamics. Math. Comp. 56, 523–563 (1991)
Houston, P., Schötzau, D., Wei, X.: A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput. 40, 281–314 (2009)
Hughes, W.F., Young, F.J.: The electromagnetodynamics of fluids. Wiley, New Jersey (1966)
Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows. Numer. Methods Partial Differ. Equ. 30(4), 1083–1102 (2014)
Lee, E., Brachet, M., Pouquet, A., Mininni, P., Rosenberg, D.: Lack of universality in decaying magnetohydrodynamic turbulence. Phys. Rev. E. 81, 016318 (2010)
Li, Y., An, R.: Temporal error analysis of Euler semi-implicit scheme for the magnetohydrodynamics equations with variable density. Appl. Numer. Math. 166, 146–167 (2021)
Li, Y., Ma, Y., An, R.: Decoupled, semi-implicit scheme for a coupled system arising in magnetohydrodynamics problem. Appl. Numer. Math. 127, 142–163 (2018)
Li, Y., Zhai, C.: Unconditionally optimal convergence analysis of second-order BDF Galerkin finite element scheme for a hybrid MHD system. Adv. Comput. Math. 46(5), 75 (2020)
Li, F., Shu, C.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22, 413–442 (2005)
Liu, C., Rivière, B.: A priori error analysis of a discontinuous Galerkin method for Cahn–Hilliard–Navier–Stokes equations. CSIAM Trans. Appl. Math. 1(1), 104–141 (2020)
Liu, J., Pego, R.: Stable discretization of magnetohydrodynamics in bounded domains. Commun. Math. Sci. 8, 235–251 (2010)
Masri, R., Liu, C., Rivière, B.: A discontinuous Galerkin pressure correction scheme for the incompressible Navier–Stokes equations: stability and convergence. Math. Comput. 91(336), 1625–1654 (2022)
Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)
Moreau, R.: Magnetohydrodynamics. Kluwer Academic Publishers, New York (1990)
Nédélec, J.C.: A new family of mixed finite elements in \({\mathbb{R}}^3\). Numer. Math. 50(1), 57–81 (1986)
Nédélec, J.C.: Mixed finite elements in \(R^3\). Numer. Math. 35, 315–341 (1980)
Nacev, A., Beni, C., Bruno, O., Shapiro, B.: The behaviors of ferro-magnetic Nano-particles in and around blood vessels under applied magnetic fields. J. Magn. Magn. Mater. 323(6), 651–668 (2011)
Nochetto, R.H., Pyo, J.H.: A finite element Gauge-Uzawa method. Part I: The Navier–Stokes equations. SIAM J. Numer. Anal. 43, 1043–1068 (2005)
Nochetto, R.H., Pyo, J.H.: A finite element Gauge-Uzawa method. Part II: Boussinesq Equations. Math. Mod. Meth. Appl. S. 16, 1599–1626 (2006)
Pietro, D., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79(271), 1303–1330 (2010)
Pyo, J.H.: Error estimates for the second order semi-discrete stabilized Gauge-Uzawa method for the Navier–Stokes equations. Int. J. Numer. Anal. Model. 10(1), 24–41 (2013)
Pyo, J.H., Shen, J.: Gauge Uzawa methods for incompressible flows with variable density. J. Comput. Phys. 211, 181–197 (2007)
Qiu, W., Shi, K.: A mixed DG method and an HDG method for incompressible magnetohydrodynamics. IMA J. Numer. Anal. 40, 1356–1389 (2019)
Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)
Ryu, D., Jones, T., Frank, A.: The magnetohydrodynamic Kelvin-Helmholtz instability: a three-dimensional study of nonlinear evolution. Astrophys. J. 545, 475–493 (2000)
Shen, J., Yang, X.: Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B31, 743–758 (2010)
Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscositites. SIAM J. Sci. Comput. 32, 1159–1179 (2010)
Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM: M2AN 56(3), 767–789 (2022)
Wang, K., Zhang, G.: Unconditionally energy stable, splitting schemes for magnetohydrodynamic equations. Int. J. Numer. Meth. Fluids. 93, 1396–1418 (2021)
Warburton, T., Karniadakis, G.: A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys. 152, 608–641 (1999)
Wang, M., Zou, G., Li, J.: A rotational pressure-correction discontinuous Galerkin scheme for the Cahn–Hilliard–Darcy–Stokes system. Adv. Comput. Math. 50, 55 (2024)
Wei, Y., Zou, G.: A splitting discontinuous Galerkin projection method for the magneto-hydrodynamic equations. Appl. Numer. Math. 197, 363–388 (2024)
Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)
Wu, J., An, R., Li, Y.: Optimal \(H^1\) error analysis of a fractional step finite element scheme for a hybrid MHD system. J. Appl. Anal. Comput 11, 1535–1556 (2021)
Yang, X., Zhang, G., He, X.: Convergence analysis of an unconditionally energy stable projection scheme for magneto-hydrodynamic equations. Appl. Numer. Math. 136, 235–256 (2019)
Yang, X., Zhang, G., He, X.: On an efficient second order backward difference Newton scheme for MHD system. J. Math. Anal. Appl. 458, 676–714 (2018)
Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations. I. Time discretization. Numer. Methods Partial Differ. Equ. 33(3), 956–973 (2017)
Zhang, G., He, X., Yang, X.: A decoupled, linear and unconditionally energy stable scheme with finite element discretizations for magneto-hydrodynamic equations. J. Sci. Comput. 81, 1678–1711 (2019)
Zhang, G., He, X., Yang, X.: Fully-decoupled, linear and unconditionally energy stable time discretization scheme for solving the magneto-hydrodynamic equations. J. Comput. Appl. Math. 369, 112636 (2020)
Zhang, X., Su, H.: A decoupled, unconditionally energy-stable and structure-preserving finite element scheme for the incompressible MHD equations with magnetic-electric formulation. Comput. Math. Appl. 146, 45–59 (2023)
Zhang, G., He, X., Yang, X.: A fully-decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations. J. Comput. Phys. 448, 110752 (2022)
Zhang, G., Yang, M., He, Y.: Block preconditioners for energy stable schemes of magnetohydrodynamics equations. Numer. Methods Partial Differ. Equ. 39, 501–522 (2023)
Zheng, Z., Zou, G., Wang, B., Zhao, W.: A fully-decoupled discontinuous Galerkin method for the nematic liquid crystal flows with SAV approach. J. Couput. Appl. Math. 429, 115027 (2023)
Zou, G., Li, Z., Yang, X.: Fully discrete discontinuous Galerkin numerical scheme with second-order temporal accuracy for the hydrodynamically coupled lipid vesicle model. J. Sci. Comput. 95(5), (2023)
Zou, G., Wang, B., Yang, X.: A fully-decoupled discontinuous Galerkin approximation of the Cahn–Hilliard–Brinkman–Ohta–Kawasaki tumor growth model. ESAIM: M2AN 56, 2141–2180 (2022)
Zou, G., Wang, B., Yang, X.: Efficient interior penalty discontinuous Galerkin projection method with unconditional energy stability and second-order temporal accuracy for the incompressible magneto-hydrodynamic system. J. Comput. Phys. 495, 112562 (2023)
Acknowledgements
The authors are grateful to the reviewers for the constructive comments and valuable suggestions which have improved the paper. Guang-an Zou is supported by the Foundation for University Youth Key Teacher of Henan Province of China (2023GGJS017) and the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (23A110006). Xiaofeng Yang is partially supported by the U.S. National Science Foundation under the grant number DMS-2012490 and DMS-2309731.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Communicated by Rolf Stenberg.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zou, Ga., Wei, Y. & Yang, X. A stabilized Gauge-Uzawa discontinuous Galerkin method for the magneto-hydrodynamic equations. Bit Numer Math 64, 40 (2024). https://doi.org/10.1007/s10543-024-01044-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10543-024-01044-7
Keywords
- Magneto-hydrodynamic system
- Interior penalty DG method
- Gauge-Uzawa method
- Fully-decoupled
- Error estimates