[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multilevel Monte Carlo using approximate distributions of the CIR process

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The Cox–Ingersoll–Ross (CIR) process has important applications in finance. However, it is challenging to develop a multilevel Monte Carlo (MLMC) method with an approximate CIR process such that the relevant MLMC variance has a constant convergence rate for all parameter regimes. In this article, we provide a solution to this problem. Our approach is based on a nested MLMC with approximate normal random variables. Specifically, we develop this method by embedding a class of approximations of the CIR process using the quantiles of noncentral chi-squared distributions. Under mild assumptions, we show that the MLMC variance is O(h) for the full parameter range of the CIR process, where h is the step size of the discretization of the CIR process. Furthermore, we extend the approach to a time-discrete scheme for the Heston model. The efficiency of this approach is illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We define \(Q_{d}(0,U)=\lim _{g\rightarrow 0}Q_{d}(g,U)=1\), \(U\in (0,1)\). Then \(\lim _{g\rightarrow 0}{\tilde{Q}}_{d}(g,U)=1\), \(U\in (0,1)\), is guaranteed by the definition of the bilinear approximation.

References

  1. Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11, 355–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfonsi, A.: High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comput. 79(269), 209–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altmayer, M., Neuenkirch, A.: Multilevel Monte Carlo quadrature of discontinuous payoffs in the generalized heston model using Malliavin integration by parts. SIAM J. Financ. Math. 6(1), 22–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen, L.: Simple and efficient simulation of the Heston stochastic volatility model. J. Comput. Finance 11(3), 1–41 (2008)

    Article  Google Scholar 

  5. Andersen, L., Piterbarg, V.: Moment explosions in stochastic volatility models. Finance Stoch. 11, 29–50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bossy, M., Olivero, H.: Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs. Bernoulli 24(3), 1995–2042 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chassagneux, J.F., Jacquier, A., Mihaylov, I.: An explicit Euler scheme with strong rate of convergence for financial SDEs with non-lipschitz coefficients. SIAM J. Financ. Math. 7, 993–1021 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox, J., Ingersoll, J., Ross, S.: A theory of term structure of interest rates. Econometrica 53(2), 385–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cozma, A., Reisinger, C.: Strong order 1/2 convergence of full truncation Euler approximations to the Cox–Ingersoll–Ross process. IMA J. Numer. Anal. 40(1), 358–376 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dereich, S., Neuenkirch, A., Szpruch, L.: An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process. Proc. R. Soc. A 468, 1105–1115 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dufresne, D.: The integrated square-root process. University of Montreal. https://minerva-access.unimelb.edu.au/items/47e5b0eb-6ea2-5577-b8f5-53821ecdd401/full (2001)

  12. Giles, M.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giles, M.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giles, M., Sheridan-Methven, O.: Approximating inverse cumulative distribution functions to produce approximate random variables. arXiv:2012.09715 (2020)

  15. Giles, M., Sheridan-Methven, O.: Analysis of nested multilevel Monte Carlo using approximate normal random variables. SIAM/ASA J. Uncertain. Quantif. 10(1), 200–226 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2003)

    Book  MATH  Google Scholar 

  17. Hammouda, C., Rached, N., Tempone, R.: Importance sampling for a robust and efficient multilevel Monte Carlo estimator for stochastic reaction networks. Stat. Comput. 30, 1655–1689 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Hefter, M., Herzwurm, A.: Strong convergence rates for Cox–Ingersoll–Ross processes-full parameter range. J. Math. Anal. Appl. 459, 1079–1101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hefter, M., Jentzen, A.: On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes. Finance Stoch. 23, 139–172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Higham, D., Mao, X.: Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comput. Finance 8(3), 35–61 (2005)

    Article  Google Scholar 

  22. Hutzenthaler, M., Jentzen, A., Noll, M.: Strong convergence rates and temporal regularity for Cox–Ingersoll–Ross processes and Bessel processes with accessible boundaries. Preprint. arXiv:1403.6385 (2018)

  23. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations, 3rd edn. Springer, New York (1999)

    MATH  Google Scholar 

  24. Lord, R., Koekkoek, R., Van Dijk, D.: A comparison of biased simulation schemes for stochastic volatility models. Quant. Finance 10(2), 177–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malham, S.J.A., Wiese, A.: Chi-square simulation of the CIR process and the Heston model. Int. J. Theor. Appl. Finance 16(3), 1–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Muirhead, R.: Aspects of Multivariate Statistical Theory. Wiley, New York (2005)

    MATH  Google Scholar 

  27. Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs defined in a domain. Numerische Mathematik 128, 103–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rujivan, S.: A closed-form formula for the conditional moments of the extended CIR process. J. Comput. Appl. Math. 297, 75–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Van Haastrecht, A., Pelsser, A.: Efficient, almost exact simulation of the Heston stochastic volatility model. Int. J. Theor. Appl. Finance 13(1), 1–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, C.: Weak convergence rate of a time-discrete scheme for the Heston stochastic volatility model. SIAM J. Numer. Anal. 55(3), 1243–1263 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zheng, C.: Multilevel Monte Carlo simulation for the Heston stochastic volatility model. Available at SSRN (2019). https://doi.org/10.2139/ssrn.2804894

  32. Zheng, C.: Higher-order weak schemes for the Heston stochastic volatility model by extrapolation. J. Math. Anal. Appl. 505(1), 125463 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof Mike Giles for suggesting the research problem and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zheng.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by National Natural Science Foundation of China (No. 11801504).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C. Multilevel Monte Carlo using approximate distributions of the CIR process. Bit Numer Math 63, 38 (2023). https://doi.org/10.1007/s10543-023-00980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00980-0

Keywords

Mathematics Subject Classification

Navigation