[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We propose a locally one dimensional (LOD) finite difference method for multidimensional Riesz fractional diffusion equation with variable coefficients on a finite domain. The numerical method is second-order convergent in both space and time directions, and its unconditional stability is strictly proved. The matrix algebraic equations of the proposed second-order schemes are almost the same as the ones of the popular first-order finite difference method for fractional operators. And the matrices involved in the schemes of different convergence orders have completely same structure and the computational count for matrix vector multiplication is \(\fancyscript{O}(N \text{ log } N)\); and the computational costs for solving the matrix algebraic equations of the second-order and first-order schemes are almost the same. The LOD-multigrid method is used to solve the resulting matrix algebraic equation, and the computational count is \(\fancyscript{O}(N \text{ log } N)\) and the required storage is \(\fancyscript{O}(N)\), where \(N\) is the number of grid points. Finally, extensive numerical experiments are performed to show the powerfulness of the second-order scheme and the LOD-multigrid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böttcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  2. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)

  3. Chan, R., Chang, Q., Sun, H.: Multigrid method for ill-conditioned symmetric Toeplitz systems. SIAM J. Sci. Comput. 19, 516–529 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, M.H., Deng, W.H.: A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Appl. Math. Model. (2014). doi:10.1016/j.apm.2013.11.043

  6. Chen, M.H., Deng, W.H., Wu, Y.J.: Second order finite difference approximations for the two-dimensional time-space Caputo–Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas, J.: On the numerical integration of \(\frac{\partial ^2 u}{\partial x^2}+\frac{\partial ^2 u}{\partial y^2}=\frac{\partial u}{\partial t}\) by implicit methods. J. Soc. Indust. Appl. Math. 3, 42–65 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  8. Douglas, J.: Alternating direction methods for three space variables. Numer. Math. 6, 428–453 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Douglas, J., Kim, S.: Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Mod. Meth. Appl. Sci. 11, 1563–1579 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Douglas, J., Peaceman, D.: Numerical solution of two-dimensioal heat flow problems. Am. Inst. Chem. Eng. J. 1, 505–512 (1955)

    Article  Google Scholar 

  11. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)

    MATH  Google Scholar 

  12. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  13. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  15. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peaceman, D., Rachford, H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  18. Ruge, J., Stuben, K.: Algebraic multigrid. In: McCormick, S. (ed.) Multigrid Methods, Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)

    Chapter  Google Scholar 

  19. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  20. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative. arXiv:1109.2345v1 [math.NA]

  21. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles. Fields and Media Higher Education Press, Beijing (2010)

    Book  Google Scholar 

  23. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. (in press) (arXiv:1201.5949v3 [math.NA])

  24. Wang, H., Wang, K., Sircar, T.: A direct \(\fancyscript {O}(N \text{ log }^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8014–8095 (2010)

    Google Scholar 

  25. Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)

  27. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

Communicated by Jan Hesthaven.

This work was supported by the Program for New Century Excellent Talents in University under Grant No. NCET-09-0438, the National Natural Science Foundation of China under Grant No. 10801067 and No. 11271173, and the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2010-63 and No. lzujbky-2012-k26.

Appendix

Appendix

For a general linear system

$$\begin{aligned} A_hu_h=f_h, \end{aligned}$$

we employ the following V-cycle MGM (Algorithm 1–2) to solve one dimensional (2.8) and V-cycle LOD-MGM (Algorithm 1–3) solve two dimensional (2.13). Solve the three dimensional system (1.1) by Algorithm 1, 2 and 4.

figure a
figure b
figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Wang, Y., Cheng, X. et al. Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation. Bit Numer Math 54, 623–647 (2014). https://doi.org/10.1007/s10543-014-0477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0477-1

Keywords

Mathematics Subject Classfication (2010)

Navigation