Abstract
Background
Breast cancer is one of the most common solid tumors in women involving multiple subtypes. However, the mechanism for subtypes of breast cancer is still complicated and unclear. Recently, several studies indicated that long non-coding RNAs (lncRNAs) could act as sponges to compete miRNAs with mRNAs, participating in various biological processes.
Methods
We concentrated on the competing interactions between lncRNAs and mRNAs in four subtypes of breast cancer (basal-like, HER2+, luminal A and luminal B), and analyzed the impacts of competing endogenous RNAs (ceRNAs) on each subtype systematically. We constructed four breast cancer subtype-related lncRNA–mRNA ceRNA networks by integrating the miRNA target information and the expression data of lncRNAs, miRNAs and mRNAs.
Results
We constructed the ceRNA network for each breast cancer subtype. Functional analysis revealed that the subtype-related ceRNA networks were enriched in cancer-related pathways in KEGG, such as pathways in cancer, miRNAs in cancer, and PI3k–Akt signaling pathway. In addition, we found three common lncRNAs across the four subtype-related ceRNA networks, NEAT1, OPI5-AS1 and AC008124.1, which played specific roles in each subtype through competing with diverse mRNAs. Finally, the potential drugs for treatment of basal-like subtype could be predicted through reversing the differentially expressed lncRNA in the ceRNA network.
Conclusion
This study provided a novel perspective of lncRNA-involved ceRNA network to dissect the molecular mechanism for breast cancer.
Similar content being viewed by others
References
Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387
Munirah MA, Siti-Aishah MA, Reena MZ, Sharifah NA, Rohaizak M, Norlia A, Rafie MK, Asmiati A, Hisham A, Fuad I, Shahrun NS, Das S (2011) Identification of different subtypes of breast cancer using tissue microarray. Rom J Morphol Embryol 52(2):669–677
Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res 5(10):2929–2943
Heimes AS, Madjar K, Edlund K, Battista MJ, Almstedt K, Elger T, Krajnak S, Rahnenfuhrer J, Brenner W, Hasenburg A, Hengstler JG, Schmidt M (2017) Subtype-specific prognostic impact of different immune signatures in node-negative breast cancer. Breast Cancer Res Treat 165(2):293–300. https://doi.org/10.1007/s10549-017-4327-0
Nie L, Wu HJ, Hsu JM, Chang SS, Labaff AM, Li CW, Wang Y, Hsu JL, Hung MC (2012) Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res 4(2):127–150
Wang J, Ye C, Xiong H, Shen Y, Lu Y, Zhou J, Wang L (2016) Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication. Oncotarget. https://doi.org/10.18632/oncotarget.12537
Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang L, Li X (2016) Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 44(D1):D980–D985. https://doi.org/10.1093/nar/gkv1094
Wang J, Ma R, Ma W, Chen J, Yang J, Xi Y, Cui Q (2016) LncDisease: a sequence based bioinformatics tool for predicting lncRNA-disease associations. Nucleic Acids Res 44(9):e90. https://doi.org/10.1093/nar/gkw093
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358. https://doi.org/10.1016/j.cell.2011.07.014
Wang Y, Hou J, He D, Sun M, Zhang P, Yu Y, Chen Y (2016) The emerging function and mechanism of ceRNAs in cancer. Trends Genet 32(4):211–224. https://doi.org/10.1016/j.tig.2016.02.001
Sandhu R, Rein J, D’Arcy M, Herschkowitz JI, Hoadley KA, Troester MA (2014) Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status. Carcinogenesis 35(11):2567–2575. https://doi.org/10.1093/carcin/bgu175
Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W (2015) ceRNA in cancer: possible functions and clinical implications. J Med Genet 52(10):710–718. https://doi.org/10.1136/jmedgenet-2015-103334
Cheng DL, Xiang YY, Ji LJ, Lu XJ (2015) Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives. Tumour Biol 36(2):479–488. https://doi.org/10.1007/s13277-015-3093-z
Cancer Genome Atlas Research N (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519–525. https://doi.org/10.1038/nature11404
Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, Weinstein JN, Liang H (2015) TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res 75(18):3728–3737. https://doi.org/10.1158/0008-5472.CAN-15-0273
Spitale A, Mazzola P, Soldini D, Mazzucchelli L, Bordoni A (2009) Breast cancer classification according to immunohistochemical markers: clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland. Ann Oncol 20(4):628–635. https://doi.org/10.1093/annonc/mdn675
Ala U, Karreth FA, Bosia C, Pagnani A, Taulli R, Leopold V, Tay Y, Provero P, Zecchina R, Pandolfi PP (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci USA 110(18):7154–7159. https://doi.org/10.1073/pnas.1222509110
Liu D, Yu X, Wang S, Dai E, Jiang L, Wang J, Yang Q, Yang F, Zhou S, Jiang W (2016) The gain and loss of long noncoding RNA associated-competing endogenous RNAs in prostate cancer. Oncotarget. https://doi.org/10.18632/oncotarget.11128
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247. https://doi.org/10.1093/nar/gkv1258
Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T, Hatzigeorgiou AG (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44(D1):D231–D238. https://doi.org/10.1093/nar/gkv1270
Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A (2011) An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2):370–381. https://doi.org/10.1016/j.cell.2011.09.041
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645. https://doi.org/10.1101/gr.092759.109
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211
Wang M, Zhao Y, Zhang B (2015) Efficient test and visualization of multi-set intersections. Sci Rep 5:16923. https://doi.org/10.1038/srep16923
Plaisier CL, Pan M, Baliga NS (2012) A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res 22(11):2302–2314. https://doi.org/10.1101/gr.133991.111
Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177–183. https://doi.org/10.1038/nrc1299
Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314. https://doi.org/10.1146/annurev-pathol-012513-104715
Yang SX, Polley E, Lipkowitz S (2016) New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat Rev 45:87–96. https://doi.org/10.1016/j.ctrv.2016.03.004
Nikitovic D, Kouvidi K, Voudouri K, Berdiaki A, Karousou E, Passi A, Tzanakakis GN (2014) The motile breast cancer phenotype roles of proteoglycans/glycosaminoglycans. Biomed Res Int 2014:124321. https://doi.org/10.1155/2014/124321
Yang L, Hou Y, Yuan J, Tang S, Zhang H, Zhu Q, Du YE, Zhou M, Wen S, Xu L, Tang X, Cui X, Liu M (2015) Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways. Oncotarget 6(28):25755–25769. https://doi.org/10.18632/oncotarget.4697
Cui Q, Yu JH, Wu JN, Tashiro S, Onodera S, Minami M, Ikejima T (2007) P53-mediated cell cycle arrest and apoptosis through a caspase-3-independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Acta Pharmacol Sin 28(7):1057–1066. https://doi.org/10.1111/j.1745-7254.2007.00588.x
Gasco M, Shami S, Crook T (2002) The p53 pathway in breast cancer. Breast Cancer Res 4(2):70–76
Shan M, Zhang X, Liu X, Qin Y, Liu T, Liu Y, Wang J, Zhong Z, Zhang Y, Geng J, Pang D (2013) P16 and p53 play distinct roles in different subtypes of breast cancer. PLoS ONE 8(10):e76408. https://doi.org/10.1371/journal.pone.0076408
Zhang M, Wu WB, Wang ZW, Wang XH (2017) lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. Eur Rev Med Pharmacol Sci 21(5):1020–1026
Lo PK, Zhang Y, Wolfson B, Gernapudi R, Yao Y, Duru N, Zhou Q (2016) Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis. Oncotarget 7(40):65067–65089. https://doi.org/10.18632/oncotarget.11364
Kim J, Abdelmohsen K, Yang X, De S, Grammatikakis I, Noh JH, Gorospe M (2016) LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res 44(5):2378–2392. https://doi.org/10.1093/nar/gkw017
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303
Mallet C, Vittet D, Feige JJ, Bailly S (2006) TGFbeta1 induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model: respective contribution of ALK1 and ALK5. Stem cells 24(11):2420–2427. https://doi.org/10.1634/stemcells.2005-0494
O’Neal J, Clem A, Reynolds L, Dougherty S, Imbert-Fernandez Y, Telang S, Chesney J, Clem BF (2016) Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res Treat 160(1):29–40. https://doi.org/10.1007/s10549-016-3968-8
Mirzania M, Safaee SR, Shahi F, Jahanzad I, Zahedi G, Mehdizadeh R (2017) Treatment outcomes and clinicopathologic characteristics of triple-negative breast cancer: a report from cancer institute of Iran. Int J Hematol Oncol Stem Cell Res 11(1):37–42
Cerase A, Pintacuda G, Tattermusch A, Avner P (2015) Xist localization and function: new insights from multiple levels. Genome Biol 16:166. https://doi.org/10.1186/s13059-015-0733-y
Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16(3):167–179. https://doi.org/10.1038/nrd.2016.117
Liu E, Liu Z, Zhou Y (2015) Carboplatin-docetaxel-induced activity against ovarian cancer is dependent on up-regulated lncRNA PVT1. Int J Clin Exp Pathol 8(4):3803–3810
Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, McCabe VM, Norris DP, Penny GD, Patel D, Rastan S (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351(6324):329–331. https://doi.org/10.1038/351329a0
Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2):121–132. https://doi.org/10.1016/j.ccr.2006.01.013
Zhou X, Liu J, Wang W (2014) Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET Syst Biol 8(3):96–103. https://doi.org/10.1049/iet-syb.2013.0025
Chen J, Xu J, Li Y, Zhang J, Chen H, Lu J, Wang Z, Zhao X, Xu K, Li Y, Li X, Zhang Y (2017) Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes. Oncotarget 8(6):10171–10184. https://doi.org/10.18632/oncotarget.14361
Acknowledgements
This work was supported by National Natural Science Foundation of China [61571169]; Natural Science Foundation of Heilongjiang Province of China [QC2014C017]; University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province [UNPYSCT-2015037].
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
10549_2018_4678_MOESM1_ESM.tif
Fig. S1 The intersection diagram of lncRNAs and mRNAs of breast cancer subtypes. A) The intersection of lncRNAs of four subtypes, each bar stand for the number of lncRNAs exists in the sets of the circular painted green. B) The intersection of mRNAs of four subtypes, each bar stand for the number of mRNAs exists in the sets of the circular painted green. Supplementary material 1 (TIFF 470 kb)
10549_2018_4678_MOESM2_ESM.tif
Fig. S2 Function annotation of common lncRNA OPI5-AS1 and AC008124.1, in four subtypes. A) C) The lncRNA OPI5-AS1 and AC008124.1 acted as miRNA sponge to compete miRNAs with other mRNAs. The four petals in the graph stood for four subtypes, respectively, the common mRNAs in different subtypes displayed in the same color, respectively. B) D) The function annotation of OPI5-AS1 and AC008124.1 on hallmark associated GO terms of mRNAs in each subtype, respectively. Supplementary material 2 (TIFF 681 kb)
10549_2018_4678_MOESM3_ESM.tif
Fig. S3 The display of Breast Cancer pathway for basal-like subtype from KEGG pathway. The yellow nodes stand for the down-regulated genes. The red nodes stand for lncRNA XIST competing with IGF1R and CDKN1A. Supplementary material 3 (TIFF 567 kb)
10549_2018_4678_MOESM4_ESM.xlsx
Supplementary Table S1: The sample barcodes of basal-like, HER2+, luminal A, luminal B subtype. Supplementary material 4 (XLSX 14 kb)
10549_2018_4678_MOESM5_ESM.xlsx
Supplementary Table S2: The verified miRNA target information of mRNAs and lncRNAs from miRTarBase and lncBase database. Supplementary material 5 (XLSX 285 kb)
10549_2018_4678_MOESM6_ESM.xlsx
Supplementary Table S3: The statistic significant competing triplets of basal-like, HER2+, luminal A, luminal B subtype. Supplementary material 6 (XLSX 16 kb)
10549_2018_4678_MOESM7_ESM.xlsx
Supplementary Table S4: The unique lncRNA–mRNA ceRNA pairs of basal-like, HER2+, luminal A, luminal B subtype to construct ceRNA networks. Supplementary material 7 (XLSX 15 kb)
10549_2018_4678_MOESM8_ESM.xlsx
Supplementary Table S5: The significant enriched KEGG pathways (p < 0.05) of basal-like, HER2+, luminal A, luminal B subtype-related networks. Supplementary material 8 (XLSX 29 kb)
10549_2018_4678_MOESM9_ESM.xlsx
Supplementary Table S6: The annotated biological process category GO terms of three lncRNAs in basal-like, HER2+, luminal A, luminal B subtype-related networks. Supplementary material 9 (XLSX 72 kb)
Rights and permissions
About this article
Cite this article
Zhou, S., Wang, L., Yang, Q. et al. Systematical analysis of lncRNA–mRNA competing endogenous RNA network in breast cancer subtypes. Breast Cancer Res Treat 169, 267–275 (2018). https://doi.org/10.1007/s10549-018-4678-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10549-018-4678-1