Abstract
Behavioral adjustments require interactions between distinct modes of cognitive control and response inhibition. Hypothetically, fast and global inhibition is exerted in the reactive control mode, whereas proactive control enables the preparation of inhibitory pathways in advance while relying on the slower selective inhibitory system. We compared the temporal progression of inhibition in the reactive and proactive control modes using simultaneous electroencephalography (EEG) and electromyography (EMG) recordings. A selective stop signal task was used where go stimuli required bimanual responses, but only one hand’s response had to be suppressed in stop trials. Reactive and proactive conditions were incorporated by non-informative and informative cues, respectively. In 47% of successful stop trials, subthreshold EMG activity was detected that was interrupted as early as 150 ms after stop stimulus presentation, indicating that inhibition occurs much earlier than previously thought. Inhibition latencies were similar across the reactive and proactive control modes. The EMG of the responding hand in successful selective stop trials indicated a global suppression of ongoing motor actions in the reactive condition, and less inhibitory interference on the ongoing actions in the proactive condition. Group-level second order blind separation (SOBI) was applied to the EEG to dissociate temporally overlapping event-related potentials. The components capturing the N1 and N2 were larger in the reactive than the proactive condition. P3 activity was distributed across four components, three of which were augmented in the proactive condition. Thus, although EEG indices were modulated by the control mode, the inhibition latency remained unaffected.
Similar content being viewed by others
References
Albares M, Lio G, Criaud M et al (2014) The dorsal medial frontal cortex mediates automatic motor inhibition in uncertain contexts: evidence from combined fMRI and EEG studies. Hum Brain Mapp 35:5517–5531. doi:10.1002/hbm.22567
Aron AR (2011) From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69:e55–e68. doi:10.1016/j.biopsych.2010.07.024
Aron AR, Verbruggen F (2008) Stop the presses: dissociating a selective from a global mechanism for stopping. Psychol Sci 19:1146–1153. doi:10.1111/j.1467-9280.2008.02216.x
Band GP, van Boxtel GJ (1999) Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychol (Amst) 101:179–211
Band GPH, van der Molen MW, Logan GD (2003) Horse-race model simulations of the stop-signal procedure. Acta Psychol 112:105–142
Bekker EM, Kenemans JL, Hoeksma MR et al (2005a) The pure electrophysiology of stopping. Int J Psychophysiol 55:191–198. doi:10.1016/j.ijpsycho.2004.07.005
Bekker EM, Overtoom CCE, Kooij JJS et al (2005b) Disentangling deficits in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 62:1129–1136. doi:10.1001/archpsyc.62.10.1129
Belouchrani A, Abed-Meraim K, Cardoso J-F, Moulines E (1997) A blind source separation technique using second-order statistics. Trans Sig Proc 45:434–444. doi:10.1109/78.554307
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
Bissett PG, Logan GD (2014) Selective stopping? Maybe not. J Exp Psychol Gen 143:455–472. doi:10.1037/a0032122
Boehler CN, Münte TF, Krebs RM et al (2009) Sensory MEG responses predict successful and failed inhibition in a stop-signal task. Cereb Cortex N Y N 19:134–145. doi:10.1093/cercor/bhn063
Boehler CN, Appelbaum LG, Krebs RM et al (2012) The influence of different stop-signal response time estimation procedures on behavior-behavior and brain-behavior correlations. Behav Brain Res 229:123–130. doi:10.1016/j.bbr.2012.01.003
Braver TS (2012) The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci 16:106–113. doi:10.1016/j.tics.2011.12.010
Burle B, Possamaï C-A, Vidal F et al (2002) Executive control in the Simon effect: an electromyographic and distributional analysis. Psychol Res 66:324–336. doi:10.1007/s00426-002-0105-6
Cai W, Oldenkamp CL, Aron AR (2011) A proactive mechanism for selective suppression of response tendencies. J Neurosci 31:5965–5969. doi:10.1523/JNEUROSCI.6292-10.2011
Claffey MP, Sheldon S, Stinear CM et al (2010) Having a goal to stop action is associated with advance control of specific motor representations. Neuropsychologia 48:541–548. doi:10.1016/j.neuropsychologia.2009.10.015
Cohen MX, van Gaal S (2014) Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors. NeuroImage 86:503–513. doi:10.1016/j.neuroimage.2013.10.033
Congdon E, Mumford JA, Cohen JR et al (2012) Measurement and reliability of response inhibition. Front Psychol 3:37. doi:10.3389/fpsyg.2012.00037
Coxon JP, Stinear CM, Byblow WD (2006) Intracortical inhibition during volitional inhibition of prepared action. J Neurophysiol 95:3371–3383. doi:10.1152/jn.01334.2005
Coxon JP, Stinear CM, Byblow WD (2007) Selective inhibition of movement. J Neurophysiol 97:2480–2489. doi:10.1152/jn.01284.2006
De Jong R, Coles MG, Logan GD, Gratton G (1990) In search of the point of no return: the control of response processes. J Exp Psychol Hum Percept Perform 16:164–182
Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21. doi:10.1016/j.jneumeth.2003.10.009
Dimoska A, Johnstone SJ, Barry RJ, Clarke AR (2003) Inhibitory motor control in children with attention-deficit/hyperactivity disorder: event-related potentials in the stop-signal paradigm. Biol Psychiatry 54:1345–1354
Dimoska A, Johnstone SJ, Barry RJ (2006) The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection? Brain Cogn 62:98–112. doi:10.1016/j.bandc.2006.03.011
Donkers FCL, van Boxtel GJM (2004) The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cogn 56:165–176. doi:10.1016/j.bandc.2004.04.005
Eichele T, Rachakonda S, Brakedal B et al (2011) EEGIFT: group independent component analysis for event-related EEG data. Comput Intell Neurosci. doi:10.1155/2011/129365
Enriquez-Geppert S, Konrad C, Pantev C, Huster RJ (2010) Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. NeuroImage 51:877–887. doi:10.1016/j.neuroimage.2010.02.043
Filipović SR, Jahanshahi M, Rothwell JC (2000) Cortical potentials related to the nogo decision. Exp Brain Res 132:411–415
Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45:152–170. doi:10.1111/j.1469-8986.2007.00602.x
Greenhouse I, Wessel JR (2013) EEG signatures associated with stopping are sensitive to preparation. Psychophysiology 50:900–908. doi:10.1111/psyp.12070
Gulberti A, Arndt PA, Colonius H (2014) Stopping eyes and hands: evidence for non-independence of stop and go processes and for a separation of central and peripheral inhibition. Front Hum Neurosci 8:61. doi:10.3389/fnhum.2014.00061
Hasbroucq T, Possamaï CA, Bonnet M, Vidal F (1999) Effect of the irrelevant location of the response signal on choice reaction time: an electromyographic study in humans. Psychophysiology 36:522–526
Huster RJ, Enriquez-Geppert S, Lavallee CF et al (2013) Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. Int J Psychophysiol 87:217–233. doi:10.1016/j.ijpsycho.2012.08.001
Huster RJ, Plis SM, Lavallee CF et al (2014) Functional and effective connectivity of stopping. NeuroImage 94:120–128. doi:10.1016/j.neuroimage.2014.02.034
Huster RJ, Plis SM, Calhoun VD (2015) Group-level component analyses of EEG: validation and evaluation. Front Neurosci 9:254. doi:10.3389/fnins.2015.00254
Huster RJ, Schneider S, Lavallee CF et al (2016) Filling the void—enriching the feature space of successful stopping. Hum Brain Mapp. doi:10.1002/hbm.23457
Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430.
Jahfari S, Waldorp L, van den Wildenberg WPM et al (2011) Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci Off J. Soc Neurosci 31:6891–6899. doi:10.1523/JNEUROSCI.5253-10.2011
Johnson R (1993) On the neural generators of the P300 component of the event-related potential. Psychophysiology 30:90–97
Kenemans JL (2015) Specific proactive and generic reactive inhibition. Neurosci Biobehav Rev 56:115–126. doi:10.1016/j.neubiorev.2015.06.011
Ko Y-T, Miller J (2011) Nonselective motor-level changes associated with selective response inhibition: evidence from response force measurements. Psychon Bull Rev 18:813–819. doi:10.3758/s13423-011-0090-0
Ko Y-T, Miller J (2013) Signal-related contributions to stopping-interference effects in selective response inhibition. Exp Brain Res 228:205–212. doi:10.1007/s00221-013-3552-y
Langford ZD, Krebs RM, Talsma D et al (2016a) Strategic down-regulation of attentional resources as a mechanism of proactive response inhibition. Eur J Neurosci. doi:10.1111/ejn.13303
Langford ZD, Schevernels H, Boehler CN (2016b) Motivational context for response inhibition influences proactive involvement of attention. Sci Rep 6:35122. doi:10.1038/srep35122
Lavallee CF, Meemken MT, Herrmann CS, Huster RJ (2014) When holding your horses meets the deer in the headlights: time-frequency characteristics of global and selective stopping under conditions of proactive and reactive control. Front Hum Neurosci 8:994. doi:10.3389/fnhum.2014.00994
Leotti LA, Wager TD (2010) Motivational influences on response inhibition measures. J Exp Psychol Hum Percept Perform 36:430–447. doi:10.1037/a0016802
Lio G, Boulinguez P (2013) Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: implications for single-subject and group analyses. NeuroImage 67:137–152. doi:10.1016/j.neuroimage.2012.11.015
Lipszyc J, Schachar R (2010) Inhibitory control and psychopathology: a meta-analysis of studies using the stop signal task. J Int Neuropsychol Soc JINS 16:1064–1076. doi:10.1017/S1355617710000895
Locke HS, Braver TS (2008) Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cogn Affect Behav Neurosci 8:99–112
Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327. doi:10.1037/0033-295X.91.3.295
Logan GD, Yamaguchi M, Schall JD, Palmeri TJ (2015) Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding. Psychol Rev 122:115–147. doi:10.1037/a0038893
Macdonald HJ, Stinear CM, Byblow WD (2012) Uncoupling response inhibition. J Neurophysiol 108:1492–1500. doi:10.1152/jn.01184.2011
Macdonald HJ, Coxon JP, Stinear CM, Byblow WD (2014) The fall and rise of corticomotor excitability with cancellation and reinitiation of prepared action. J Neurophysiol. doi:10.1152/jn.00366.2014
Majid DSA, Cai W, George JS et al (2012) Transcranial magnetic stimulation reveals dissociable mechanisms for global versus selective corticomotor suppression underlying the stopping of action. Cereb Cortex N Y N 22:363–371. doi:10.1093/cercor/bhr112
Majid DSA, Cai W, Corey-Bloom J, Aron AR (2013) Proactive selective response suppression is implemented via the basal ganglia. J Neurosci 33:13259–13269. doi:10.1523/JNEUROSCI.5651-12.2013
Munakata Y, Herd SA, Chatham CH et al (2011) A unified framework for inhibitory control. Trends Cogn Sci 15:453–459. doi:10.1016/j.tics.2011.07.011
Nieuwenhuis S, Yeung N, van den Wildenberg W, Ridderinkhof KR (2003) Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci 3:17–26
Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 131:510–532. doi:10.1037/0033-2909.131.4.510
Nunez PL, Srinivasan R, Westdorp AF et al (1997) EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515
Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113
Onton J, Westerfield M, Townsend J, Makeig S (2006) Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev 30:808–822. doi:10.1016/j.neubiorev.2006.06.007
Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. doi:10.1016/j.clinph.2007.04.019
Salinas E, Stanford TR (2013) The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance. J Neurosci 33:5668–5685. doi:10.1523/JNEUROSCI.3977-12.2013
Schall JD, Godlove DC (2012) Current advances and pressing problems in studies of stopping. Curr Opin Neurobiol 22:1012–1021. doi:10.1016/j.conb.2012.06.002
Schevernels H, Bombeke K, Van der Borght L et al (2015) Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. NeuroImage 121:115–125. doi:10.1016/j.neuroimage.2015.07.023
Smittenaar P, Guitart-Masip M, Lutti A, Dolan RJ (2013) Preparing for selective inhibition within frontostriatal loops. J Neurosci 33:18087–18097. doi:10.1523/JNEUROSCI.2167-13.2013
Smittenaar P, Rutledge RB, Zeidman P et al (2015) Proactive and reactive response inhibition across the lifespan. PloS One 10:e0140383. doi:10.1371/journal.pone.0140383
Ullsperger M, Danielmeier C, Jocham G (2014) Neurophysiology of performance monitoring and adaptive behavior. Physiol Rev 94:35–79. doi:10.1152/physrev.00041.2012
van den Wildenberg WPM, Burle B, Vidal F et al (2010) Mechanisms and dynamics of cortical motor inhibition in the stop-signal paradigm: a TMS study. J Cogn Neurosci 22:225–239. doi:10.1162/jocn.2009.21248
Verbruggen F, Logan GD (2015) Evidence for capacity sharing when stopping. Cognition 142:81–95. doi:10.1016/j.cognition.2015.05.014
Verbruggen F, Chambers CD, Logan GD (2013) Fictitious inhibitory differences: how skewness and slowing distort the estimation of stopping latencies. Psychol Sci 24:352–362. doi:10.1177/0956797612457390
Verbruggen F, McLaren IPL, Chambers CD (2014a) Banishing the control homunculi in studies of action control and behavior change. Perspect Psychol Sci 9:497–524. doi:10.1177/1745691614526414
Verbruggen F, Stevens T, Chambers CD (2014b) Proactive and reactive stopping when distracted: an attentional account. J Exp Psychol Hum Percept Perform 40:1295–1300. doi:10.1037/a0036542
Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37:190–203
Wessel JR, Aron AR (2014) It’s not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm. Psychophysiology. doi:10.1111/psyp.12374
Wessel JR, Jenkinson N, Brittain J-S et al (2016) Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism. Nat Commun 7:11195. doi:10.1038/ncomms11195
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical Approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Raud, L., Huster, R.J. The Temporal Dynamics of Response Inhibition and their Modulation by Cognitive Control. Brain Topogr 30, 486–501 (2017). https://doi.org/10.1007/s10548-017-0566-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10548-017-0566-y