Abstract
Neural network formation is a complex process involving axon outgrowth and guidance. Axon guidance is facilitated by structural and molecular cues from the surrounding microenvironment. Micro-fabrication techniques can be employed to produce microfluidic chips with a highly controlled microenvironment for neural cells enabling longitudinal studies of complex processes associated with network formation. In this work, we demonstrate a novel open microfluidic chip design that encompasses a freely variable number of nodes interconnected by axon-permissible tunnels, enabling structuring of multi-nodal neural networks in vitro. The chip employs a partially open design to allow high level of control and reproducibility of cell seeding, while reducing shear stress on the cells. We show that by culturing dorsal root ganglion cells (DRGs) in our microfluidic chip, we were able to structure a neural network in vitro. These neurons were compartmentalized within six nodes interconnected through axon growth tunnels. Furthermore, we demonstrate the additional benefit of open top design by establishing a 3D neural culture in matrigel and a neuronal aggregate 3D culture within the chips. In conclusion, our results demonstrate a novel microfluidic chip design applicable to structuring complex neural networks in vitro, thus providing a versatile, highly relevant platform for the study of neural network dynamics applicable to developmental and regenerative neuroscience.
Similar content being viewed by others
References
M.W. Amoroso, G.F. Croft, D.J. Williams, S. O’Keeffe, M.A. Carrasco, A.R. Davis, et al., J Neurosci : Official J Soc Neurosci. 33, 2 (2013)
M.-C. Chuang, H.-Y. Lai, J.-A. Annie Ho, Y.-Y. Chen, Biosens. Bioelectron. 41 (2013)
B. Deleglise, S. Magnifico, E. Duplus, P. Vaur, V. Soubeyre, M. Belle, et al., Acta Neuropathol. Commun. 2 (2014)
J.-P. Dollé, B. Morrison, R.R. Schloss, M.L. Yarmush, Lab Chip 13, 3 (2013)
S. Hosmane, A. Fournier, R. Wright, L. Rajbhandari, R. Siddique, I.H. Yang, et al., Lab Chip 11, 22 (2011)
T.T. Kanagasabapathi, D. Ciliberti, S. Martinoia, W.J. Wadman, M.M.J. Decré, Front. Neuroeng. 4 (2011)
H.K. Kleinman, G.R. Martin, Semin. Cancer Biol. 15, 5 (2005)
M.A. Lancaster, N.S. Corsini, S. Wolfinger, E.H. Gustafson, A.W. Phillips, T.R. Burkard, et al., Nat. Biotechnol. 35, 7 (2017)
H.U. Lee, S. Nag, A. Blasiak, Y. Jin, N. Thakor, I.H. Yang, ACS Chem. Neurosci. 7, 10 (2016)
Y. Lei, J. Li, N. Wang, X. Yang, Y. Hamada, Q. Li, et al., Integr. Biol. 8, 3 (2016)
X. Lu, J.S. Kim-Han, K.L. O’Malley, S.E. Sakiyama-Elbert, J. Neurosci. Methods 209, 1 (2012)
J.W. Park, B. Vahidi, A.M. Taylor, S.W. Rhee, N.L. Jeon, Nat. Protoc. 1, 4 (2006)
J.-M. Peyrin, B. Deleglise, L. Saias, M. Vignes, P. Gougis, S. Magnifico, et al., Lab Chip 11, 21 (2011)
W.W. Poon, M. Blurton-Jones, C.H. Tu, L.M. Feinberg, M.A. Chabrier, J.W. Harris, et al., Neurobiol. Aging 32, 5 (2011)
S.K. Ravula, M.S. Wang, S.A. Asress, J.D. Glass, A. Bruno Frazier, J. Neurosci. Methods 159, 1 (2007)
R. Renault, N. Sukenik, S. Descroix, L. Malaquin, J.-L. Viovy, J.-M. Peyrin, et al., PLoS One 10, 4 (2015)
O. Sporns, R. Kötter, PLoS Biol. 2, 11 (2004)
A.M. Taylor, S.W. Rhee, C.H. Tu, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Langmuir: ACS J Surfaces Colloids 19, 5 (2003)
A.M. Taylor, M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Nat. Methods 2, 8 (2005)
A.M. Taylor, S. Menon, S.L. Gupton, Lab Chip 15, 13 (2015)
M. Tessier-Lavigne, M. Placzek, A.G.S. Lumsden, J. Dodd, T.M. Jessell, Nature 336, 6201 (1988)
C. Tsantoulas, C. Farmer, P. Machado, K. Baba, S.B. McMahon, R. Raouf, PLoS One 8, 11 (2013)
B. Vahidi, J.W. Park, H.J. Kim, N.L. Jeon, J. Neurosci. Methods 170, 2 (2008)
Y. Wang, V. Balaji, S. Kaniyappan, L. Krüger, S. Irsen, K. Tepper, et al., Mol. Neurodegener. 12 (2017)
G.M. Whitesides, Nature 442, 7101 (2006)
Y. Yu, M.H. Shamsi, D.L. Krastev, M.D.M. Dryden, Y. Leung, A.R. Wheeler, Lab Chip 16, 3 (2016)
E.E. Zahavi, A. Ionescu, S. Gluska, T. Gradus, K. Ben-Yaakov, E. Perlson, J. Cell Sci. 128, 6 (2015)
Acknowledgements
This work was supported by the Research Council of Norway, Norwegian Micro- and Nano-Fabrication Facility, NorFab, project number 245963/F50, NTNU program for Enabling Technologies, (Nanotechnology), and the Liaison Committee between the Central Norway Health Authority and NTNU (Samarbeidsorganet HMN-NTNU).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
All animal procedures were in accordance with the EU Directive 86/609/EEC and the Norwegian laws and regulations controlling procedures on experimental animals.
Conflict of interest
There are no conflicts to declare.
Additional information
Rosanne van de Wijdeven and Ola Huse Ramstad share first authorship
Rights and permissions
About this article
Cite this article
van de Wijdeven, R., Ramstad, O.H., Bauer, U.S. et al. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip. Biomed Microdevices 20, 9 (2018). https://doi.org/10.1007/s10544-017-0254-4
Published:
DOI: https://doi.org/10.1007/s10544-017-0254-4