Abstract
We have developed a simple microfluidic device for generating stable concentration gradients in 2D and 3D environments. The device, termed the Ladder Chamber, uses a two-compartment diffusion system to generate steady state gradients across flow-free channels that connect the source and sink channels. To demonstrate the utility of the Ladder Chamber for cell migration, neutrophil chemotaxis was successfully observed in soluble chemoattractant (IL-8) gradient. The Ladder Chamber’s simple design and experimental implementation make it an attractive approach for investigating cell migration and other biological experiments in well-defined gradients in 2D surfaces as well as in 3D gels.
Similar content being viewed by others
References
M. Bailly, L. Yan, G.M. Whitesides, J.S. Condeelis, J.E. Segall, Exp. Cell Res. 241, 285–299 (1998)
S. Boyden, J. Exp. Med. 115, 453–466 (1962)
X. Cao, M.S. Shoichet, Neuroscience 103, 831–840 (2001)
B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, N.L. Jeon, Lab Chip 5, 401–406 (2005)
J.S. Condeelis, J.B. Wyckoff, M. Bailly, R. Pestell, D. Lawrence, J. Backer, J.E. Segall, Semin. Cancer Biol. 11, 119–128 (2001)
J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1964)
E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, New York, 1997)
S.K.W. Dertinger, D.T. Chiu, N.L. Jeon, G.M. Whitesides, Anal. Chem. 73, 1240–1246 (2001)
P.R. Fisher, R. Merkl, G. Gerisch, J. Cell Biol. 108, 973–984 (1989)
P. Friedl, P.B. Noble, K.S. Zanker, J. Immunol. Methods 165, 157–165 (1993)
P. Friedl, K.S. Zanker, E.B. Brocker, Microsc. Res. Tech. 43, 369–378 (1998)
G. Gerisch, H.U. Keller, J. Cell Sci. 52, 1–10 (1981)
S. Goswami, E. Sahai, J.B. Wyckoff, M. Cammer, D. Cox, F.J. Pixley, E.R. Stanley, J.E. Segall, J.S. Condeelis, Cancer Res. 65, 5278–5283 (2005)
J.L. Haddox, R.R. Pfister, C.I. Sommers, J. Immunol. Methods 141, 41–52 (1991)
J.L. Haddox, I.W. Knowles, C.I. Sommers, R.R. Pfister, J. Immunol. Methods 171, 1–14 (1994)
N.L. Jeon, S.K.W. Dertinger, D.T. Chiu, G.M. Whitesides, Langmuir 16, 8311–8316 (2000)
N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L. Van De Water, M. Toner, Nat. Biotechnol. 20, 826–830 (2002)
S. Kanegasaki, Y. Nomura, N. Nitta, S. Akiyama, T. Tamatani, Y. Goshoh, T. Yoshida, T. Sato, Y. Kikuchi, J. Immunol. Methods 282, 1–11 (2003)
J. Kassis, D.A. Lauffenburger, T. Turner, A. Wells, Semin. Cancer Biol. 11, 105–119 (2001)
D.M. Knapp, E.F. Helou, R.T. Tranquillo, Exp. Cell Res. 247, 543–553 (1999)
D.A. Lauffenburger, S.H. Zigmond, J. Immunol. Methods 40, 45–60 (1981)
F. Lin, C.M. Nguyen, S.J. Wang, W. Saadi, S.P. Gross, N.L. Jeon, Biochem. Biophys. Res. Commun. 319, 576–581 (2004a)
F. Lin, W. Saadi, S.W. Rhee, S.-J. Wang, S. Mittal, N.L. Jeon, Lab Chip 4, 164–167 (2004b)
F. Lin, C.M. Nguyen, S.J. Wang, W. Saadi, S.P. Gross, N.L. Jeon, Ann. Biomed. Eng. 33, 475–482 (2005)
A.M. Lohof, M. Quillan, Y. Dan, M.M. Poo, J. Neurosci. 12, 1253–1261 (1992)
G. Maheshwari, A. Wells, L.G. Griffith, D.A. Lauffenburger, Biophys. J. 76, 2814–2823 (1999)
P.V. Moghe, R.D. Nelson, R.T. Tranquillo, J. Immunol. Methods 180, 193–211 (1995)
R.D. Nelson, P.G. Quie, R.L. Simmons, J. Immunol. 115, 1650–1656 (1975)
R.M. Nerem, R.W. Alexander, D.C. Chappell, R.M. Medford, S.E. Varner, W.R. Taylor, Am. J. Med. Sci. 316, 169–175 (1998)
W.J. Rosoff, J.S. Urbach, M.A. Esrick, R.G. McAllister, L.J. Richards, G.J. Goodhill, Nat. Neurosci. 7, 678–682 (2004)
W.J. Rosoff, R. McAllister, M.A. Esrick, G.J. Goodhill, J.S. Urbach, Biotechnol. Bioeng. 91, 754–759 (2005)
W. Saadi, S.-J. Wang, F. Lin, N.L. Jeon, Biomed. Microdevices 8, 109–118 (2006)
L. Soon, G. Mouneimne, J. Segall, J. Wyckoff, J. Condeelis, Cell Motil. Cytoskelet. 62, 27–34 (2005)
C. Tanford, Physical Chemistry of Macromolecules (Wiley, New York, 1961)
M.D. Tang, A.P. Golden, J. Tien, J. Am. Chem. Soc. 125, 12988–12989 (2003)
G.M. Walker, J. Sai, A. Richmond, M. Stremler, C.Y. Chung, J.P. Wikswo, Lab Chip 5, 611–618 (2005)
S.-J. Wang, W. Saadi, F. Lin, C.M.-C. Nguyen, N.L. Jeon, Exp. Cell Res. 300, 180–189 (2004)
A. Wells, Adv. Cancer Res. 78, 31–101 (2000)
A. Wells, J. Kassis, J. Solava, T. Turner, D.A. Lauffenburger, Acta Oncol. 41, 124–130 (2002)
G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu. Rev. Biomed. Eng. 3, 335–373 (2001)
P.C. Wilkinson, J. Immunol. Methods 216, 139–153 (1998)
H. Wu, B. Huang, R.N. Zare, J. Am. Chem. Soc. 128, 4194–4195 (2006)
Z. Xiao, N. Zhang, D.B. Murphy, P.N. Devreotes, J. Cell Biol. 139, 365–374 (1997)
X. Yang, J. Corvalan, P. Wang, C. Roy, C. Davis, J. Leukoc. Biol. 66, 401–410 (1999)
J.Q. Zheng, M. Felder, J.A. Connor, M.M. Poo, Nature 368, 140–144 (1994)
D. Zicha, G. Dunn, A. Brown, J. Cell Sci. 99, 769–775 (1991)
S.H. Zigmond, J. Cell Biol. 75, 606–616 (1977)
Acknowledgment
We thank Professor Steven S. George and Justin Mih for reagents and valuable discussions. We also thank Dr. Kapil Krishan for assistance with diffusion calculations, and Dr. Mike Papac for equipment. This research was supported by the Department of Defense (Grants no. DAMD17-03-1-0515 and no. DAMD17-03-1-0673).
Author information
Authors and Affiliations
Corresponding author
Additional information
Equal contribution from Saadi and Rhee.
Supporting Information
Movie of neutrophil migration in a 0–50 ng/mL IL-8 gradient inside microgrooves will be available in supporting information.
Rights and permissions
About this article
Cite this article
Saadi, W., Rhee, S.W., Lin, F. et al. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9, 627–635 (2007). https://doi.org/10.1007/s10544-007-9051-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10544-007-9051-9