[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Information-sharing and decision-making in networks of radiation detectors

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A network of sensors observes a time-inhomo-geneous Poisson signal and within a fixed time interval has to decide between two hypotheses regarding the signal’s intensity. The paper reveals an interplay between network topology, essentially determining the quantity of information available to different sensors, and the quality of individual sensor information as captured by the sensor’s likelihood ratio. Armed with analytic expressions of bounds on the error probabilities associated with the binary hypothesis test regarding the intensity of the observed signal, the insight into the interplay between sensor communication and data quality helps in deciding which sensor is better positioned to make a decision on behalf of the network, and links the analysis to network centrality concepts. The analysis is illustrated on networked radiation detection examples, first in simulation and then on cases utilizing field measurement data available through a U.S. Domestic Nuclear Detection Office (dndo) database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. For a test \(B_1\), the probability of detection is given by \(\mathbb {P}_1(B_1)\); of course, this equals \(1-\mathbb {P}_1(\varOmega \setminus B_1)\) where \(\mathbb {P}_1(\varOmega \setminus B_1)\) is the probability of miss.

References

  • Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700–765.

    Article  Google Scholar 

  • Brémaud, P. (1981). Point processes and queues. martingale dynamics. New York: Springer-Verlag.

    Book  Google Scholar 

  • Byrd, R., Moss, J., Priedhorsky, W., Pura, C., Richter, G. W., Saeger, K., et al. (2005). Nuclear detection to prevent or defeat clandestine nuclear attack. IEEE Sensors Journal, 5(4), 593–609.

    Article  Google Scholar 

  • Canonical IRSS Data-Sets. https://github.com/raonsv/canonical-datasets.

  • Ettus, M. (1998). System capacity, latency, and power consumption in multihop-routed SS-CDMA wireless networks. In Proceedings RAWCON 98. 1998 IEEE radio and wireless conference (Cat. No. 98EX194), pp. 55–58.

  • Fax, J. A., & Murray, R. M. (2004). Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 49(9), 1465–1476.

    Article  MathSciNet  Google Scholar 

  • Godsil, C. D., & Royle, G. (2001). Algebraic graph theory. New York: Springer.

    Book  Google Scholar 

  • González, F. I., Bernard, E. N., Meinig, C., Eble, M. C., Mofjeld, H. O., & Stalin, S. (2005). The NTHMP tsunameter network. Natural Hazards, 35, 25–39.

    Article  Google Scholar 

  • Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  • Howard, A., Mataric, M. J., Sukhatme, G. S. (2003) Putting the ’i’ in ’team’: an ego-centric approach to cooperative localization. In 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422). (Vol. 1, pp. 868–874).

  • Intelligent Radiation Sensing Systems. https://www.dhs.gov/intelligent-radiation-sensing-system.

  • Jarman, K. D., Smith, L. E., & Carlson, D. K. (2004). Sequential probability ratio test for long-term radiation monitoring. IEEE Transactions on Nuclear Science, 51(4), 1662–1666.

    Article  Google Scholar 

  • Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48–50.

    Article  MathSciNet  Google Scholar 

  • Lewis, P. A. W., & Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by thinning. Naval Research Logistics Naval Research Logistics Quarterly, 26(3), 403–413.

    Article  MathSciNet  Google Scholar 

  • Li, Q., De Rosa, M., Rus, D. (2003) Distributed algorithms for guiding navigation across a sensor network. In Proceedings of the 9th annual international conference on mobile computing and networking, MobiCom ’03, (pp. 313–325). ACM, New York, NY, USA

  • Mesbahi, M. (2005). On state-dependent dynamic graphs and their controllability properties. IEEE Transactions on Automatic Control, 50(3), 387–392.

    Article  MathSciNet  Google Scholar 

  • Morreale, P., Qi, F., & Croft, P. (2011). A green wireless sensor network for environmental monitoring and risk identification. International Journal of Sensor Networks, 10(1–2), 73–82.

    Article  Google Scholar 

  • Nemzek, R. J., Dreicer, J. S., Torney, D. C., & Warnock, T. T. (2004). Distributed sensor networks for detection of mobile radioactive sources. IEEE Transactions on Nuclear Science, 51(4), 1693–1700.

    Article  Google Scholar 

  • Newman, M. (2010). Networks: an introduction. New York, NY: Oxford University Press Inc.

    Book  Google Scholar 

  • Newman, M. E. J. (2001). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64, 016–132.

    Google Scholar 

  • Ogata, Y. (1999). Seismicity analysis through point-process modeling: a review. Pure and Applied Geophysics, 155, 471–507.

    Article  Google Scholar 

  • Pahlajani, C. D., Poulakakis, I., & Tanner, H. G. (2014). Networked decision making for Poisson processes with applications to nuclear detection. IEEE Transactions on Automatic Control, 59(1), 193–198.

    Article  Google Scholar 

  • Pahlajani, C. D., Sun, J., Poulakakis, I., & Tanner, H. G. (2014). Error probability bounds for nuclear detection: Improving accuracy through controlled mobility. Automatica, 50(10), 2470–2481.

    Article  MathSciNet  Google Scholar 

  • Pahlajani, C. D., Yadav, I., Tanner, H. G., & Poulakakis, I. (2016). Decision-making accuracy for networks of sensors observing time-inhomogeneous Poisson processes. In A. Kolling & R. Gross (Eds.), Distributed autonomous robotic systems: The 13th international symposium. Springer, (in print).

  • Pasupathy, R. (2009). Generating nonhomogeneous Poisson processes. In Wiley Encyclopedia of Operations Research and Management Science. Wiley.

  • Ponstein, J. (1966). Self-avoiding paths and the adjacency matrix of a graph. SIAM Journal on Applied Mathematics, 14(3), 600–609.

    Article  MathSciNet  Google Scholar 

  • Poulakakis, I., Scardovi, L., Leonard, N.E. (2012). Node classification in collective evidence accumulation toward a decision. In Proceedings of the IEEE international conference on decision and control.

  • Poulakakis, I., Young, G. F., Scardovi, L., & Leonard, N. E. (2016). Information centrality and ordering of nodes for accuracy in noisy decision-making networks. IEEE Transactions on Automatic Control, 61(4), 1040–1046.

    Article  MathSciNet  Google Scholar 

  • Rao, N. S. V., Shankar, M., Chin, J. C., Yau, D. K. Y., Srivathsan, S., Iyengar, S. S., Yang, Y., Hou, J. C. (2000). Identification of low-level point radiation sources using a sensor network. In 2008 International conference on information processing in sensor networks (IPSN 2008), pp. 493–504.

  • Roumeliotis, S. I., & Bekey, G. A. (2002). Distributed multirobot localization. IEEE Transactions on Robotics and Automation, 18(5), 781–795.

    Article  Google Scholar 

  • Shepard, T. J. (1996). A channel access scheme for large dense packet radio networks. In Proceedings of the ACM SIGCOMM 1996 conference on applications, technologies, architectures, and protocols for computer communication, Stanford, CA, USA, August 26–30, 1996, pp. 219–230.

  • Srikrishna, D., Chari, A. N., & Tisch, T. (2005). Deterance of nuclear terrorism with mobile radiation detectors. The Nonproliferation Review, 12(3), 573–614.

    Article  Google Scholar 

  • Stephenson, K., & Zelen, M. (1989). Rethinking centrality: Methods and examples. Social Networks, 11(1), 1–37.

    Article  MathSciNet  Google Scholar 

  • Stroupe, A. W., Martin, M. C., Balch, T. (2001). Distributed sensor fusion for object position estimation by multi-robot systems. In Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No. 01CH37164), (Vol. 2, pp. 1092–1098).

  • Sun, J., & Tanner, H. G. (2015). Constrained decision making for low-count radiation detection by mobile sensors. Autonomous Robots, 39(4), 519–536.

    Article  Google Scholar 

  • Sundaresan, A., Varshney, P. K., Rao, N. S. V. (2007). Distributed detection of a nuclear radioactive source using fusion of correlated decisions. In Proceedings of the international conference on information fusion, (pp. 1–7). IEEE.

  • Tenney, R. R., & Sandell, N. R, Jr. (1981). Detection with distributed sensors. IEEE Transactions on Aerospace and Electronic Systems, 17(4), 501–510.

    Article  MathSciNet  Google Scholar 

  • Tsitsiklis, J., & Athans, M. (1985). On the complexity of distributed decision problems. IEEE Transactions on Automatic Control, AC–30, 440–446.

    Article  Google Scholar 

  • Tsitsiklis, J. N. (1993). Decentralized detection. Advances in Statistical Signal Processing, 2, 297–344.

    Google Scholar 

  • Van Trees, H. L. (2001). Detection, estimation, and modulation theory (Vol. 1). Hoboken: Wiley-Interscience.

    MATH  Google Scholar 

  • Varshney, P. K. (1997). Distributed detections and data fusion. New York: Springer-Verlag.

    Book  Google Scholar 

  • Viswanathan, R., & Varshney, P. K. (1997). Distributed detection with multiple sensors: Part I—Fundamentals. Proceedings of the IEEE, 85(1), 54–63.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by DTRA under award #HDTRA1-16-1-0039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajeet Yadav.

Additional information

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Distributed Robotics: From Fundamentals to Applications”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, I., Pahlajani, C.D., Tanner, H.G. et al. Information-sharing and decision-making in networks of radiation detectors. Auton Robot 42, 1715–1730 (2018). https://doi.org/10.1007/s10514-018-9716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9716-7

Keywords

Navigation