[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Topological map construction and scene recognition for vehicle localization

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a vehicle localization method to assist vehicle navigation based on topological map construction and scene recognition. A topological map is constructed using omni-directional image sequences, and the node information of the topological map is used for place recognition and derivation of vehicle location. In topological map construction and scene change detection, we utilize the Extended-HCT method for semantic description and feature extraction. Content-based and feature-based image retrieval approaches are adopted for place recognition and vehicle localization on the real scene image dataset. The proposed technique is able to construct a real-time image retrieval system for navigation assistance and validate the correctness of the route. Experiments are carried out in both the indoor and outdoor environments using real world images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cantone, D., Ferro, A., Pulvirenti, A., Recupero, D., & Shasha, D. (2005). Antipole tree indexing to support range search and k-nearest neighbor search in metric spaces. IEEE Transactions on Knowledge and Data Engineering, 17(4), 535–550. doi:10.1109/TKDE.2005.53.

    Article  Google Scholar 

  • Chatzichristofis, S. A., & Boutalis, Y. S. (2008). Cedd: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval. In Proceedings of the 6th International Conference on Computer Vision Systems, ICVS’08 (pp. 312–322). Berlin, Heidelberg: Springer-Verlag. http://dl.acm.org/citation.cfm?id=1788524.1788559.

  • Chatzichristofis, S. A., & Boutalis, Y. S. (2008). Fcth: Fuzzy color and texture histogram - a low level feature for accurate image retrieval. In Proceedings of the 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS ’08 (pp. 191–196). Washington, DC, USA: IEEE Computer Society. doi:10.1109/WIAMIS.2008.24.

  • Chatzichristofis, S. A., & Boutalis, Y. S. (2010). Content based radiology image retrieval using a fuzzy rule based scalable composite descriptor. Multimedia Tools and Applications, 46(2–3), 493–519. doi:10.1007/s11042-009-0349-x.

    Article  Google Scholar 

  • Chi, Z., Yan, H., & Pham, T. (1996). Fuzzy algorithms: With applications to image processing and pattern recognition. River Edge, NJ, USA: World Scientific Publishing Co., Inc.

  • Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3), 462–467. doi:10.1109/TIT.1968.1054142.

    Article  MATH  Google Scholar 

  • Conte, G., & Doherty, P. (2009). Vision-based unmanned aerial vehicle navigation using geo-referenced information. EURASIP Journal on Advances in Signal Processing 2009(1), 387,308. doi:10.1155/2009/387308. http://asp.eurasipjournals.com/content/2009/1/387308.

  • Cummins, M., & Newman, P. (2008). Fab-map: Probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research, 27(6), 647–665. doi:10.1177/0278364908090961.

    Article  Google Scholar 

  • Eakins, J., Graham, M., Eakins, J., Graham, M., & Franklin, T. (1999). Content-based image retrieval. Library and Information Briefings, 85, 1–15.

    Google Scholar 

  • Huang, C. L., & Liao, B. Y. (2001). A robust scene-change detection method for video segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 11(12), 1281–1288. doi:10.1109/76.974682.

    Article  Google Scholar 

  • Larnaout, D., Gay-Belllile, V., Bourgeois, S., & Dhome, M. (2014). Vision-based differential gps: Improving vslam / gps fusion in urban environment with 3d building models. In 2014 2nd International Conference on 3D Vision (3DV), (Vol. 1, pp. 432–439). doi:10.1109/3DV.2014.73.

  • Lee, S. W., Kim, Y. M., & Choi, S. W. (2000). Fast scene change detection using direct feature extraction from mpeg compressed videos. IEEE Transactions on Multimedia, 2(4), 240–254. doi:10.1109/6046.890059.

    Article  Google Scholar 

  • Lin, H., Lin, Y., & Yao, J. (2013). Scene change detection and topological map construction using omnidirectional image sequences. In Proceedings of the 13. IAPR International Conference on Machine Vision Applications (MVA 2013) (pp. 57–60). Kyoto, Japan, 20–23 May 2013. http://www.mva-org.jp/Proceedings/2013USB/papers/04-06.pdf.

  • Liu, M., Alper, B., & Siegwart, R. (2013). An adaptive descriptor for uncalibrated omnidirectional images - towards scene reconstruction by trifocal tensor. In 2013 IEEE International Conference on Robotics and Automation (ICRA) (pp. 558–563). doi:10.1109/ICRA.2013.6630629.

  • Liu, M., & Siegwart, R. (2012). DP-FACT: Towards topological mapping and scene recognition with color for omnidirectional camera. In 2012 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3503–3508). doi:10.1109/ICRA.2012.6225040.

  • Liu, M., & Siegwart, R. (2014). Topological mapping and scene recognition with lightweight color descriptors for an omnidirectional camera. IEEE Transactions on Robotics, 30(2), 310–324. doi:10.1109/TRO.2013.2272250.

    Article  Google Scholar 

  • Maier, D., & Kleiner, A. (2010). Improved gps sensor model for mobile robots in urban terrain. In 2010 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4385–4390). doi:10.1109/ROBOT.2010.5509895.

  • Milford, M., & Wyeth, G. (2012). Seqslam: Visual route-based navigation for sunny summer days and stormy winter nights. In 2012 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1643–1649). doi:10.1109/ICRA.2012.6224623.

  • Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2007). Object retrieval with large vocabularies and fast spatial matching. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8). doi:10.1109/CVPR.2007.383172.

  • Pronobis, A., & Caputo, B. (2009). Cold: The cosy localization database. The International Journal of Robotics Research, 28(5), 588–594. doi:10.1177/0278364909103912.

    Article  Google Scholar 

  • Radioman. (2013). Gmap.net - great maps for windows forms & presentation, http://greatmaps.codeplex.com.

  • Ranganathan, A. (2012). Pliss: Labeling places using online changepoint detection. Autonomous Robots, 32(4), 351–368. doi:10.1007/s10514-012-9273-4.

    Article  Google Scholar 

  • Rituerto, A., Murillo, A., & Guerrero, J. (2014). Semantic labeling for indoor topological mapping using a wearable catadioptric system. Robotics and Autonomous Systems 62(5), 685 – 695. doi:10.1016/j.robot.2012.10.002. http://www.sciencedirect.com/science/article/pii/S0921889012001856. (Special issue semantic perception, mapping and exploration).

  • Shahraray, B. (1995). Scene change detection and content-based sampling of video sequences. Proceedings of SPIE, 2419, 2–13. doi:10.1117/12.206348.

    Article  Google Scholar 

  • Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Transactions on pattern analysis and machine intelligence, 22(12), 1349–1380. doi:10.1109/34.895972.

    Article  Google Scholar 

  • Stone, D. Differt, Milford, M., & Webb, B. (2016). Skyline-based Localisation for Aggressively Manoeuvring Robots using UV sensors and Spherical Harmonics. In 2016 IEEE International Conference on Robotics and Automation, ICRA 2016. Stockholm, Sweden, May 16–21. doi:10.1109/ICRA.2016.7487780.

  • Toledo-Moreo, R., Zamora-Izquierdo, M., Ubeda-Miarro, B., & Gmez-Skarmeta, A. (2007). High-integrity imm-ekf-based road vehicle navigation with low-cost gps/sbas/ins. IEEE Transactions on Intelligent Transportation Systems, 8(3), 491–511. doi:10.1109/TITS.2007.902642.

    Article  Google Scholar 

  • Wang, M. L., & Lin, H.Y. (2010). A hull census transform for scene change detection and recognition towards topological map building. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 548 –553). doi:10.1109/IROS.2010.5652817.

  • Wang, M. L., & Lin, H. Y. (2011). An extended-hct semantic description for visual place recognition. The International Journal of Robotics Research, 30(11), 1403–1420. doi:10.1177/0278364911406760.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Science Council Taiwan (Grant No. NSC-99-2221-E-194-005-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huei-Yung Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HY., Yao, CW., Cheng, KS. et al. Topological map construction and scene recognition for vehicle localization. Auton Robot 42, 65–81 (2018). https://doi.org/10.1007/s10514-017-9638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-017-9638-9

Keywords

Navigation