Abstract
Macrophages play a crucial role in several diseases’ development and progression, such as in cancer and arthritis through ROS generation and inflammation. This makes macrophages a therapeutic target in these diseases. While silver nanoparticles (AgNP) have been widely used as an antibacterial and investigated as anticancer, its potential against macrophages may be limited due to its inherent oxidative mechanism. Here we encapsulated AgNP in a dipalmitoyl-phosphatidyl choline (DPPC) liposome (forming Lipo-AgNP) to suppress AgNP-induced ROS and enhance its cytotoxicity against THP1-differentiated macrophages (TDM). Our findings showed that while Lipo-AgNP had significantly more of a cytotoxic effect on TDMs (p < 0.01), it also significantly suppressed AgNP induced ROS generation and unexpectedly suppressed reduced glutathione (GSH) levels (p < 0.05) resulting in a redox imbalance in comparison to the unexposed control TDMs. Lipo-AgNP was also found to cause an increase DNA damage through H2AX histone phosphorylation and inhibition of Bcl-2 protein expression. This increased the Bax/Bcl2 ratio causing possible release of cytochrome C and subsequent caspase 3/7-dependent apoptosis. It was found that the difference between the mechanism of AgNP and Lipo-AgNP cytotoxicity may have been through the significantly increased Lipo-AgNP uptake by the TDMs as early as 30 min post-exposure (p < 0.05), changing the nanoparticle pharmacokinetic. In conclusion, the improved uptake of AgNP within the liposome caused ROS-independent caspase activation induced by Lipo-AgNP and this was facilitated by increased DNA damage, the induced redox imbalance and an increased Bax/Bcl-2 ratio.
Similar content being viewed by others
References
Ponzoni M, Pastorino F, Di Paolo D, Perri P, Brignole C (2018) Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int J Mol Sci 19:1953
Fultang L, Gamble LD, Gneo L et al (2019) Macrophage-derived IL1β and TNFα regulate arginine metabolism in neuroblastoma. Cancer Res 79:611–624
Voronov E, Carmi Y, Apte RN (2014) The role IL-1 in tumor-mediated angiogenesis. Front Physiol 5:114
Kim EY, Moudgil KD (2017) Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine 98:87–96
Bae YS, Lee JH, Choi SH et al (2009) Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res 104:210–218, 221p following 218
Kim SY, Jeong J-M, Kim SJ et al (2017) Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4–MD2 complex. Nat Commun 8:2247
Virani SS, Nambi V, Hoogeveen R et al (2011) Relationship between circulating levels of RANTES (regulated on activation, normal T-cell expressed, and secreted) and carotid plaque characteristics: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Eur Heart J 32:459–468
Canli O, Nicolas AM, Gupta J et al (2017) Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32:869-883 e865
Roberts CA, Dickinson AK, Taams LS (2015) The interplay between monocytes/macrophages and CD4 + T cell subsets in rheumatoid arthritis. Front Immunol 6:571
Vendrov AE, Hakim ZS, Madamanchi NR, Rojas M, Madamanchi C, Runge MS (2007) Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler Thromb Vasc Biol 27:2714–2721
Haase A, Tentschert J, Jungnickel H et al (2011) Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. J Phys 304(1):012030
Verano-Braga T, Miethling-Graff R, Wojdyla K et al (2014) Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8:2161–2175
Yusuf A, Brophy A, Gorey B, Casey A (2018) Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis. J Appl Toxicol 38:616–627
Yusuf AO, Casey A (2019) Surface modification of silver nanoparticle (AgNP) by liposomal encapsulation mitigates AgNP-induced inflammation. Toxicol Vitro.https://doi.org/10.1016/j.tiv.2019.104641
Briuglia ML, Rotella C, McFarlane A, Lamprou DA (2015) Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 5:231–242
Chanput W, Mes JJ, Wichers HJ (2014) THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol 23:37–45
Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12:12347–12360
Liu B, Tan X, Liang J et al (2014) A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci Rep 4:7041
Azimian H, Dayyani M, Toossi MTB, Mahmoudi M (2018) Bax/Bcl-2 expression ratio in prediction of response to breast cancer radiotherapy. Iran J Basic Med Sci 21:325–332
Knezevic D, Zhang W, Rochette PJ, Brash DE (2007) Bcl-2 is the target of a UV-inducible apoptosis switch and a node for UV signaling. Proc Natl Acad Sci 104:11286–11291
Beduneau A, Ma Z, Grotepas CB et al (2009) Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS ONE 4:e4343
Wu Q, Miao T, Feng T, Yang C, Guo Y, Li H (2018) Dextran–coated superparamagnetic iron oxide nanoparticles activate the MAPK pathway in human primary monocyte cells. Mol Med Rep 18:564–570
Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ (2016) Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 10:1021–1040
Roux C, Jafari SM, Shinde R et al (2019) Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc Natl Acad Sci 116:4326–4335
Haase H, Fahmi A, Mahltig B (2014) Impact of silver nanoparticles and silver ions on innate immune cells. J Biomed Nanotechnol 10:1146–1156
Yin N, Liu Q, Liu J et al (2013) Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9:1831–1841
Wright SC, Wang H, Wei QS, Kinder DH, Larrick JW (1998) Bcl-2-mediated resistance to apoptosis is associated with glutathione-induced inhibition of AP24 activation of nuclear DNA fragmentation. Cancer Res 58:5570–5576
Voehringer D, McConkey D, McDonnell T, Brisbay S, Meyn R (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Nat Acad Sci 95:2956–2960
Salakou S, Kardamakis D, Tsamandas AC et al (2007) Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo 21:123–132
Zhu L, Han MB, Gao Y et al (2015) Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol Med Rep 12:1151–1156
Kulsoom B, Shamsi TS, Afsar NA, Memon Z, Ahmed N, Hasnain SN (2018) Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Manag Res 10:403
Del Principe MI, Dal Bo M, Bittolo T et al (2016) Clinical significance of bax/bcl-2 ratio in chronic lymphocytic leukemia. Haematologica 101:77–85
Luo Y, Wang X, Wang H et al (2015) High bak expression is associated with a favorable prognosis in breast cancer and sensitizes breast cancer cells to paclitaxel. PLoS ONE 10:e0138955
Ghooshchian M, Khodarahmi P, Tafvizi F (2017) Apoptosis-mediated neurotoxicity and altered gene expression induced by silver nanoparticles. Toxicol Ind Health 33:757–764
Wang Q, Gao F, May WS, Zhang Y, Flagg T, Deng X (2008) Bcl2 negatively regulates DNA double-strand-break repair through a nonhomologous end-joining pathway. Mol Cell 29:488–498
Deng G, Su JH, Ivins KJ, Van Houten B, Cotman CW (1999) Bcl-2 facilitates recovery from DNA damage after oxidative stress. Exp Neurol 159:309–318
Claudia M, Kristin O, Jennifer O, Eva R, Eleonore F (2017) Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro. Toxicology 378:25–36
Zucker RM, Daniel KM (2012) Detection of TiO2 nanoparticles in cells by flow cytometry. Methods Mol Biol 906:497–509
Jochums A, Friehs E, Sambale F, Lavrentieva A, Bahnemann D, Scheper T (2017) Revelation of different nanoparticle-uptake behavior in two standard cell lines NIH/3T3 and A549 by flow cytometry and time-lapse imaging. Toxics 5:15
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM (2015) Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Rel 205:35–44
Rafiyath SM, Rasul M, Lee B, Wei G, Lamba G, Liu D (2012) Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol 1:10
Ong SG, Ming LC, Lee KS, Yuen KH (2016) Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of Griseofulvin-loaded liposomes. Pharmaceutics 8:25
Acknowledgements
This research work and Azeez Yusuf was supported by the Dublin Institute of Technology’s Fiosraigh dean of graduate’s research fellowship. Alan Casey acknowledges the support of the Science Foundation Ireland Principal Investigator Award 11/PI/1108.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Yusuf, A., Casey, A. Liposomal encapsulation of silver nanoparticles (AgNP) improved nanoparticle uptake and induced redox imbalance to activate caspase-dependent apoptosis. Apoptosis 25, 120–134 (2020). https://doi.org/10.1007/s10495-019-01584-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10495-019-01584-2