[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Coupled locality discriminant analysis with globality preserving for dimensionality reduction

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Dimensionality reduction plays a key role in pattern recognition. It can preserve essential and inherent feature information while reducing noise and redundant information contained in the high-dimensional raw data, which achieve performance improvement in subsequent tasks (e.g., classification and clustering). Locality preserving projection (LPP), as a typical method for dimensionality reduction, can explore the local sub-manifold of the raw data with the aid of K-nearest neighbor (KNN). However, LPP has some serious limitations: (1) the neighbor parameter is artificially set, and this leads to the problem that the size of the neighbor parameter may affect the performance of LPP in the application; (2) LPP, as a single-view method, cannot function in multi-view data; (3) LPP ignores both the discriminative information and the global linear relationship of the raw data. In response to these limitations, we propose a novel multi-view dimensionality reduction method called coupled locality discriminant analysis with globality preserving (CLDA-GP). CLDA-GP can learn a couple of optimal mappings so that different multi-view raw spaces can be mapped into a low-dimensional uniform elastic subspace while keeping the local sub-manifold and global linear relationship. It is also worth mentioning that CLDA-GP gives another strategy called local similarity self-learning (LSSL) to excavate the local manifold information of the multi-view data. By utilizing the LSSL strategy, CLDA-GP casts off the limitation of the neighbor parameter. Besides, CLDA-GP further introduces the supervision information of the raw data, which enables its discriminant power. The experiment results on the artificial and benchmark (COIL-20, GT, and Umist) datasets prove CLDA-GP outperforms the comparative methods, which also illustrate the effectiveness and feasibility of CLDA-GP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Xu X, Liang T, Zhu J, Zheng D, Sun T (2019) Review of classical dimensionality reduction and sample selection methods for large-scale data processing[J]. Neurocomputing 328:5–15

    Article  Google Scholar 

  2. Zebari R, Abdulazeez A, Zeebaree D, Zebari D, Saeed J (2020) A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction[J]. J Appl Sci Technol Trends 1(2):56–70

    Article  Google Scholar 

  3. Aït-Sahalia Y, Xiu D (2019) Principal component analysis of high-frequency data[J]. J Am Stat Assoc 114(525):287–303

    Article  MathSciNet  MATH  Google Scholar 

  4. Li H, Zhang L, Huang B, Zhou X (2020) Cost-sensitive dual-bidirectional linear discriminant analysis[J]. Inf Sci 510:283–303

    Article  MathSciNet  Google Scholar 

  5. Gu Y, Wei HL (2018) A robust model structure selection method for small sample size and multiple datasets problems[J]. Inf Sci 451:195–209

    Article  MATH  Google Scholar 

  6. Gopi ES, Palanisamy P (2014) Maximizing Gaussianity using kurtosis measurement in the kernel space for kernel linear discriminant analysis[J]. Neurocomputing 144:329–337

    Article  Google Scholar 

  7. Pang Y, Wang S, Yuan Y (2014) Learning regularized LDA by clustering[J]. IEEE Trans Neural Netw Learn Syst 25(12):2191–2201

    Article  Google Scholar 

  8. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  9. Malik ZK, Hussain A, Wu J (2016) An online generalized eigenvalue version of laplacian eigenmaps for visual big data[J]. Neurocomputing 173:127–136

    Article  Google Scholar 

  10. Zhang S, Lei YK (2011) Modified locally linear discriminant embedding for plant leaf recognition[J]. Neurocomputing 74(14–15):2284–2290

    Article  Google Scholar 

  11. Huang Z, Xu X, Zuo L (2014) Reinforcement learning with automatic basis construction based on isometric feature mapping[J]. Inf Sci 286:209–227

    Article  Google Scholar 

  12. Peng X, Tang H, Zhang L, Yi Z, Xiao S (2015) A unified framework for representation-based subspace clustering of out-of-sample and large-scale data[J]. IEEE Trans Neural Netw Learn Syst 27(12):2499–2512

    Article  MathSciNet  Google Scholar 

  13. He X, Niyogi P (2004) Locality preserving projections[J]. Adv Neural Inf Proces Syst 16(16):153–160

    Google Scholar 

  14. He X, Cai D, Yan S et al (2005) Neighborhood preserving embedding[C]//tenth IEEE international conference on computer vision (ICCV'05) volume 1. IEEE, 2: 1208–1213

  15. Cai D, He X, Han J, Zhang HJ (2006) Orthogonal laplacianfaces for face recognition[J]. IEEE Trans Image Process 15(11):3608–3614

    Article  Google Scholar 

  16. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique[J]. IEEE Trans Pattern Anal Mach Intell 29(12):2143–2156

    Article  Google Scholar 

  17. Yang L, Gong W, Gu X, Li W, Liang Y (2008) Null space discriminant locality preserving projections for face recognition[J]. Neurocomputing 71(16–18):3644–3649

    Article  Google Scholar 

  18. Wang Z, Sun X (2008) Face recognition using kernel-based NPE[C]//2008 international conference on computer science and software engineering. IEEE, 1: 802–805

  19. Wang SJ, Chen HL, Peng XJ, Zhou CG (2011) Exponential locality preserving projections for small sample size problem[J]. Neurocomputing 74(17):3654–3662

    Article  Google Scholar 

  20. Long T, Sun Y, Gao J, Hu Y, Yin B (2020) Locality preserving projection based on Euler representation[J]. J Vis Commun Image Represent 70:102796

    Article  Google Scholar 

  21. Zang F, Zhang J, Pan J (2012) Face recognition using Elasticfaces. Pattern Recogn 45(11):3866–3876

    Article  MATH  Google Scholar 

  22. Abeo TA, Shen XJ, Bao BK et al (2019) A generalized multi-dictionary least squares framework regularized with multi-graph embeddings[J]. Pattern Recogn 90:1–11

    Article  Google Scholar 

  23. Sun QS, Zeng SG, Liu Y, Heng PA, Xia DS (2005) A new method of feature fusion and its application in image recognition[J]. Pattern Recogn 38(12):2437–2448

    Article  Google Scholar 

  24. Sun T, Chen S (2007) Locality preserving CCA with applications to data visualization and pose estimation[J]. Image Vis Comput 25(5):531–543

    Article  Google Scholar 

  25. Lin G, Fan G, Kang X, Zhang E, Yu L (2016) Heterogeneous feature structure fusion for classification[J]. Pattern Recogn 53:1–11

    Article  Google Scholar 

  26. Sun T, Chen S, Yang J et al (2008) A supervised combined feature extraction method for recognition[C]//Procedings of the IEEE international conference on data mining, Pisa, Italy. 1043–1048

  27. Peng Y, Zhang D, Zhang J (2010) A new canonical correlation analysis algorithm with local discrimination[J]. Neural Process Lett 31(1):1–15

    Article  Google Scholar 

  28. Barker M, Rayens W (2003) Partial least squares for discrimination[J]. J Chemom: A Journal of the Chemometrics Society 17(3):166–173

    Article  Google Scholar 

  29. Li B, Chang H, Shan S et al (2009) Coupled metric learning for face recognition with degraded images[C]//Asian conference on machine learning. Springer, Berlin, Heidelberg, 220–233

  30. Ben X, Meng W, Yan R, Wang K (2013) Kernel coupled distance metric learning for gait recognition and face recognition[J]. Neurocomputing 120:577–589.30

    Article  Google Scholar 

  31. Rastin N, Jahromi MZ, Taheri M (2021) A generalized weighted distance k-nearest neighbor for multi-label problems[J]. Pattern Recogn 114:107526

    Article  Google Scholar 

  32. Huang P, Gao G (2015) Local similarity preserving projections for face recognition[J]. AEU Int J Electron Commun 69(11):1724–1732

    Article  Google Scholar 

  33. Yang B, Chen S (2010) Sample-dependent graph construction with application to dimensionality reduction[J]. Neurocomputing 74(1–3):301–314

    Article  Google Scholar 

  34. Chen J, Wang G, Giannakis GB (2019) Graph multiview canonical correlation analysis[J]. IEEE Trans Signal Process 67(11):2826–2838

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61806006), the China Postdoctoral Science Foundation (Grant No. 2019 M660149), the Institute of Energy, Hefei Comprehensive National Science Center (Grant No. 19KZS203), Science and Technology Research Project of Wuhu City (Grant No. 2020yf48).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, S., Zhu, G., Zhu, Y. et al. Coupled locality discriminant analysis with globality preserving for dimensionality reduction. Appl Intell 53, 7118–7131 (2023). https://doi.org/10.1007/s10489-022-03409-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03409-3

Keywords

Navigation