[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Feasibility, planning and control of ground-wall transition for a suctorial hexapod robot

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

One of the key factors that affect the efficiency and scope of work of wall-climbing robots is how the climbing robot can achieve autonomous transition between adjacent vertical planes. This paper studies the problem of ground-wall transition of a self-developed suctorial wall-climbing hexapod robot (WelCH). In view of the feasibility of the robot performing transition, this paper makes a detailed analysis of the number and property of degrees of freedom (DOFs) of the body and the foot based on reciprocal screw theory, and the results show that the robot can achieve transitional motion only when its home configuration is axisymmetric rather than radially symmetric. For realizing the robot’s ground-wall transition, based on a Sinusoid-Sigmoid-Shaped (SS-Shaped) interpolation function, the motion strategies of foot transferring and body pitching are firstly designed in detail. This interpolation method can effectively avoid the wear of the suction cups by relying on fewer essential path points. Then, the saturation-truncated method and mean filtering method are used to deal with joint constraints and abrupt changes in angular velocities. Finally, a kinematic-based adaptive sliding mode control (ASMC) is adapted to track the planned smooth trajectory, which can effectively resist bounded external disturbances. The successful transitions from the horizontal ground to the vertical wall for the robot WelCH in simulation and filed experiment demonstrate the effectiveness of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. He B, Xu S, Zhou Y, Wang Z (2018) Mobility properties analyses of a wall climbing hexapod robot. J Mech Sci Technol 32(3):1333–1344. https://doi.org/10.1007/s12206-018-0237-2

    Article  Google Scholar 

  2. Bogue R (2019) Climbing robots: recent research and emerging applications. Ind Robot 46 (6):721–727. https://doi.org/10.1108/IR-08-2019-0154

    Article  Google Scholar 

  3. Seo T, Jeon Y, Park C, Kim J (2019) Survey on glass and faċade-cleaning robots: Climbing mechanisms, cleaning methods, and applications. Int J Precis Eng Manuf-Green Technol 6(2):367–376. https://doi.org/10.1007/s40684-019-00079-4

    Article  Google Scholar 

  4. Liu Y, Sun S, Wu X, Mei T (2015) A wheeled wall-climbing robot with bio-inspired spine mechanisms. J Bion Eng 12(1):17–28. https://doi.org/10.1016/S1672-6529(14)60096-2

    Article  Google Scholar 

  5. Song W, Jiang H, Wang T, Ji D, Zhu S (2018) Design of permanent magnetic wheel-type adhesion-locomotion system for water-jetting wall-climbing robot. Adv Mech Eng 10(7):1–11. https://doi.org/10.1177/1687814018787378

    Article  Google Scholar 

  6. Muthugala M A V J, Vegaheredia M, Mohan R E, Vishaal S R (2020) Design and control of a wall cleaning robot with adhesion-awareness. Symmetry 12(1):1–18. https://doi.org/10.3390/sym12010122

    Article  Google Scholar 

  7. Seo K, Cho S, Kim T, Kim H S, Kim J (2013) Design and stability analysis of a novel wall-climbing robotic platform (rope ride). Mech Mach Theory 70:189–208. https://doi.org/10.1016/j.mechmachtheory.2013.07.012

    Article  Google Scholar 

  8. Kermorgant O (2018) A magnetic climbing robot to perform autonomous welding in the shipbuilding industry. Robot Comput Integr Manuf 53:178–186. https://doi.org/10.1016/j.rcim.2018.04.008

    Article  Google Scholar 

  9. Chang Q, Luo X, Qiao Z, Li Q (2019) Design and motion planning of a biped climbing robot with redundant manipulator. Appl Sci 9(15):1–20. https://doi.org/10.3390/app9153009

    Article  Google Scholar 

  10. Xu S, He B, Hu H (2019) Research on kinematics and stability of a bionic wall-climbing hexapod robot. Appl Bion Biomech 2019:1–17. https://doi.org/10.1155/2019/6146214

    Google Scholar 

  11. Wang B, Zhang K, Yang X, Cui X (2020) The gait planning of hexapod robot based on cpg with feedback. Int J Adv Robot Syst 17(3):1–12. https://doi.org/10.1177/1729881420930503

    Google Scholar 

  12. Kim D, Kim Y S, Noh K, Jang M, Kim S (2020) Wall climbing robot with active sealing for radiation safety of nuclear power plants. Nucl Sci Eng:1–13. https://doi.org/10.1080/00295639.2020.1777023

  13. Liu J, Xu L, Xu J, Li T, Chen S, Xu H, Cheng G, Ceccarelli M (2020) Design, modeling and experimentation of a biomimetic wall-climbing robot for multiple surfaces. J Bion Eng 17:523–538. https://doi.org/10.1007/s42235-020-0042-3

    Article  Google Scholar 

  14. Chen N, Shi K, Li X (2020) Theoretical and experimental study and design method of blade height of a rotational-flow suction unit in a wall-climbing robot. J Mech Robot 12 (4):1–11. https://doi.org/10.1115/1.4045652

    Article  Google Scholar 

  15. Wu X, Wang C, Hua S (2019) Adaptive extended state observer-based nonsingular terminal sliding mode control for the aircraft skin inspection robot. J Intell Robot Syst 98:1–12. https://doi.org/10.1007/s10846-019-01067-1

    Google Scholar 

  16. Sayed M E, Roberts J O, McKenzie R M, Aracri S, Buchoux A, Stokes A A (2020) Limpet ii: a modular, untethered soft robot. Soft Robotics:1–21. https://doi.org/10.1089/soro.2019.0161

  17. Syrykh N V, Chashchukhin V G (2019) Wall-climbing robots with permanent-magnet contact devices: Design and control concept of the contact devices. J Comput Syst Sci Int 58(5):818–827. https://doi.org/10.1134/s1064230719050137

    Article  MATH  Google Scholar 

  18. Spenko M J, Haynes G C, Saunders J, Cutkosky M R, Rizzi A A, Full R J, Koditschek D E (2008) Biologically inspired climbing with a hexapedal robot. J Field Robot 25(4-5):223–242. https://doi.org/10.1002/rob.20238

    Article  Google Scholar 

  19. Sintov A, Avramovich T, Shapiro A (2011) Design and motion planning of an autonomous climbing robot with claws. Robot Auton Syst 59(11):1008–1019. https://doi.org/10.1016/j.robot.2011.06.003

    Article  Google Scholar 

  20. Alkalla M G, Fanni M A, Mohamed A F, Hashimoto S, Sawada H, Miwa T, Hamed A (2019) Ejbot-ii: an optimized skid-steering propeller-type climbing robot with transition mechanism. Adv Robot 33 (20):1042–1059. https://doi.org/10.1080/01691864.2019.1657948

    Article  Google Scholar 

  21. Xiao J, Xiao J, Xi N, Dulimarta H, Tummala R L, Minor M, Mukherjee R (2004) Modeling, control, and motion planning of a climbing microrobot. Integr Comput-Aided Eng 11(4):289–307. https://doi.org/10.3233/ICA-2004-11401

    Article  Google Scholar 

  22. Guan Y, Zhu H, Wu W, Zhou X, Jiang L, Cai C, Zhang L, Zhang H (2012) A modular biped wall-climbing robot with high mobility and manipulating function. IEEE/ASME Trans Mechatron 18 (6):1787–1798. https://doi.org/10.1109/TMECH.2012.2213303

    Article  Google Scholar 

  23. Loc V G, Sg Roh, Koo I M, Tran D T, Kim H M, Moon H, Choi H R (2010) Sensing and gait planning of quadruped walking and climbing robot for traversing in complex environment. Robot Auton Syst 58(5):666–675. https://doi.org/10.1016/j.robot.2009.11.007

    Article  Google Scholar 

  24. Meng C, Wang T, Guan S, Zhang L, Wang J, Li X (2011) Design and analysis of gecko-like robot. Chin J Mech Eng-Engl Ed 24(2):224–236. https://doi.org/10.3901/CJME.2011.02.224

    Article  Google Scholar 

  25. Qian J, Gong Z, Zhang Q (1997) On transit gait programming of six-legged wall-climbing robot. J Shanghai Univ (Engl Ed) 1(1):42–47. https://doi.org/10.1007/s11741-997-0042-0

    Article  Google Scholar 

  26. Qian J, Zhang Z, Ma L (2007) Gait programming for multi-legged robot climbing on walls and ceilings. Bioinspiration and Robotics Walking and Climbing Robots:147–170. https://doi.org/10.5772/5499

  27. Nam S, Oh J, Lee G, Kim J, Seo T (2014) Dynamic analysis during internal transition of a compliant multi-body climbing robot with magnetic adhesion. J Mech Sci Technol 28(12):5175–5187. https://doi.org/10.1007/s12206-014-1141-z

    Article  Google Scholar 

  28. Lee G, Kim H, Seo K, Kim J, Sitti M, Seo T (2016) Series of multilinked caterpillar track-type climbing robots. J Field Robot 33(6):737–750. https://doi.org/10.1002/rob.21550

    Article  Google Scholar 

  29. Wang Z h, Gj B, Lb Z, Yang Q h (2009) Development and control of flexible pneumatic wall-climbing robot. J Central South Univ Technol 16(6):961–970. https://doi.org/10.1007/s11771-009-0160-x

    Article  Google Scholar 

  30. Henrey M, Ahmed A, Boscariol P, Shannon L, Menon C (2014) Abigaille-iii: a versatile, bioinspired hexapod for scaling smooth vertical surfaces. J Bion Eng 11(1):1–17. https://doi.org/10.1016/S1672-6529(14)60015-9

    Article  Google Scholar 

  31. Thor M, Manoonpong P (2019) A fast online frequency adaptation mechanism for cpg-based robot motion control. IEEE Robot Autom Lett 4(4):3324–3331. https://doi.org/10.1109/LRA.2019.2926660

    Article  Google Scholar 

  32. Zhong G, Deng H, Xin G, Wang H (2016) Dynamic hybrid control of a hexapod walking robot: Experimental verification. IEEE Trans Ind Electron 63(8):5001–5011. https://doi.org/10.1109/TIE.2016.2551679

    Google Scholar 

  33. Sánchez E, Luviano A, Rosales A (2017) A robust gpi controller for trajectory tracking tasks in the limbs of a walking robot. Int J Control Autom Syst 15(6):2786–2795. https://doi.org/10.1007/s12555-015-0387-2

  34. Wu J, Sun Q, Fujita H, Chiclana F (2019) An attitudinal consensus degree to control the feedback mechanism in group decision making with different adjustment cost. Knowl-Based Syst 164:265–273. https://doi.org/10.1016/j.knosys.2018.10.042

    Article  Google Scholar 

  35. Blažič S (2014) On periodic control laws for mobile robots. IEEE Trans Ind Electron 61 (7):3660–3670. https://doi.org/10.1109/TIE.2013.2287222

    Article  Google Scholar 

  36. Haidegger T, Kovács L, Preitl S, Precup R E, Benyo B, Benyo Z (2011) Controller design solutions for long distance telesurgical applications. Int J Artif Intell 6(S11):48–71

    MATH  Google Scholar 

  37. Plamondon N, Nahon M (2009) A trajectory tracking controller for an underwater hexapod vehicle. Bioinspir Biom 4(3):1–13. https://doi.org/10.1088/1748-3182/4/3/036005

    Google Scholar 

  38. Soltanpour M R, Khooban M H, Khalghani M R (2016) An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode. J Vib Control 22(1):159–175. https://doi.org/10.1177/1077546314526920

    Article  MathSciNet  MATH  Google Scholar 

  39. Navvabi H, Markazi A H (2019) New afsmc method for nonlinear system with state-dependent uncertainty: Application to hexapod robot position control. J Intell Robot Syst 95 (1):61–75. https://doi.org/10.1007/s10846-018-0850-4

    Article  Google Scholar 

  40. Wei W, Sun J, Gao Y, Yeboah Y, Huang L (2019) The system design and gait planning for walking-climbing hexapod. In: Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence. ACM, pp 208–212, https://doi.org/10.1145/3319921.3319940

  41. Murray RM (1994) A mathematical introduction to robotic manipulation. CRC press, https://doi.org/10.1201/9781315136370

  42. Gogu G (2005) Mobility of mechanisms: a critical review. Mech Mach Theory 40(9):1068–1097. https://doi.org/10.1016/j.mechmachtheory.2004.12.014

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang Z, LI Q, Ding H (2013) Theory of Parallel Mechanisms. Springer. https://doi.org/10.1007/978-94-007-4201-7

  44. Narendra KS, Annaswamy AM (2012) Stable adaptive systems. Courier Corporation

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 61573148, 61603358), and the Science and Technology Planning Project of Guangdong Province, China (grant number 2015B010919007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Wei.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wei, W., Wang, X. et al. Feasibility, planning and control of ground-wall transition for a suctorial hexapod robot. Appl Intell 51, 5506–5524 (2021). https://doi.org/10.1007/s10489-020-01955-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01955-2

Keywords

Navigation