[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Generalized interaction aggregation operators in intuitionistic fuzzy multiplicative preference environment and their application to multicriteria decision-making

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The main objective of this manuscript is to present a new preference relation called the intuitionistic fuzzy multiplicative preference relation. Under this, some series of new aggregation operators, by overcoming the shortcomings of some existing operators, have been defined. As most of the aggregation operators have been constructed under the intuitionistic fuzzy preference relation which deals with the conditions that the attribute values grades are symmetrical and uniformly distributed. In this manuscript, these assumptions have been relaxed by distributing the attribute grades to be asymmetrical around 1 and hence under it, some series of aggregation operators, namely intuitionistic fuzzy multiplicative interactive weighted, ordered weighted and hybrid weighted averaging operators have been proposed. Various desirable properties of these operators have also been discussed in details. A group decision-making method has been presented, based on the proposed operators, for ranking the different alternatives. A real example is taken to demonstrate the applicability and validity of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MATH  Google Scholar 

  2. Garg H (2016a) Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput Ind Eng 101:53–69

    Article  Google Scholar 

  3. Garg H (2016b) Generalized intuitionistic fuzzy multiplicative interactive geometric operators and their application to multiple criteria decision making. Int J Mach Learn Cybern 7(6):1075–1092

    Article  Google Scholar 

  4. Garg H (2016c) A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems. Appl Soft Comput 38:988–999. https://doi.org/10.1016/j.asoc.2015.10.040

    Article  Google Scholar 

  5. Garg H (2016d) A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int J Intell Syst 31(9):886–920

    Article  Google Scholar 

  6. Garg H (2016e) A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. J Intell Fuzzy Syst 31(1):529– 540

    Article  MATH  Google Scholar 

  7. Garg H (2016f) A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes. Int J Intell Syst 31(12):1234–1252

    Article  Google Scholar 

  8. Garg H (2016g) Some series of intuitionistic fuzzy interactive averaging aggregation operators. SpringerPlus 5(1):999. https://doi.org/10.1186/s40064-016-2591-9

    Article  Google Scholar 

  9. Garg H (2017a) Distance and similarity measure for intuitionistic multiplicative preference relation and its application. Int J Uncertain Quantif 7(2):117–133

    Article  Google Scholar 

  10. Garg H (2017b) Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng Appl Artif Intell 60:164–174

    Article  Google Scholar 

  11. Garg H, Arora R (2017) Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making. Applied Intelligence. https://doi.org/10.1007/s10489-017-0981-5

  12. He Y, Chen H, Zhou L, Han B, Zhao Q, Liu J (2014) Generalized intuitionistic fuzzy geometric interaction operators and their application to decision making. Expert Syst Appl 41(0):2484–2495

    Article  Google Scholar 

  13. Jiang Y, Xu Z (2014) Aggregating information and ranking alternatives in decision making with intuitionistic multiplicative preference relations. Appl Soft Comput 22:162–177

    Article  Google Scholar 

  14. Jiang Y, Xu Z, Gao M (2015) Methods for ranking intuitionistic multiplicative numbers by distance measures in decision making. Comput Ind Eng 88:100–109

    Article  Google Scholar 

  15. Kumar K, Garg H (2016) TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Computational and Applied Mathematics. https://doi.org/10.1007/s40314-016-0402-0

  16. Liu HF, Xu ZS, Liao HC (2016) The multiplicative consistency index of hesitant fuzzy preference relation. IEEE Trans Fuzzy Syst 24(1):82–93

    Article  Google Scholar 

  17. Mou Q, Xu ZS, Liao HC (2016) An intuitionistic fuzzy multiplicative best-worst method for multi-criteria group decision-making. Inf Sci 374:224–239

    Article  Google Scholar 

  18. Nancy, Garg H (2016) Novel single-valued neutrosophic decision making operators under frank norm operations and its application. Int J Uncertain Quantif 6(4):361–375

    Article  Google Scholar 

  19. Nayagam VLG, Muralikrishnan S, Sivaraman G (2011) Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets. Expert Syst Appl 38(3):1464– 1467

    Article  Google Scholar 

  20. Nayagam VLG, Jeevaraj S, Dhanasekaran P (2016) An intuitionistic fuzzy multi-criteria decision-making method based on non-hesitance score for interval-valued intuitionistic fuzzy sets. Soft Computing. https://doi.org/10.1007/s00500-016-2249-0

  21. Orlovsky SA (1978) Decision-making with a fuzzy preference relation. Fuzzy Sets Syst 1:155–167

    Article  MathSciNet  MATH  Google Scholar 

  22. Saaty TL (1986) Axiomatic foundation of the analytic hierarchy process. Manag Sci 32(7):841–845

    Article  MathSciNet  MATH  Google Scholar 

  23. Sahin R (2015) Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets. Soft Comput 20(7):2557–2563

    Article  MATH  Google Scholar 

  24. Wang W, Liu X (2012) Intuitionistic fuzzy information aggregation using einstein operations. IEEE Trans Fuzzy Syst 20(5):923–938

    Article  Google Scholar 

  25. Wang WZ, Liu XW (2011) Intuitionistic fuzzy geometric aggregation operators based on einstein operations. Int J Intell Syst 26:1049–1075

    Article  Google Scholar 

  26. Wang X, Triantaphyllou E (2008) Ranking irregularities when evaluating alternatives by using some electre methods. Omega - Int J Manag Sci 36:45–63

    Article  Google Scholar 

  27. Wu J, Chiclana F, Liao HC (2017) Isomorphic multiplicative transitivity between intuitionistic and interval-valued fuzzy preference relations and application in deriving priority vector. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2016.2646749

  28. Xia M, Xu ZS (2010) Generalized point operators for aggregating intuitionistic fuzzy information. Int J Intell Syst 25(11):1061–1080

    MATH  Google Scholar 

  29. Xia M, Xu Z, Liao H (2013) Preference relations based on intuitionistic multiplicative information. IEEE Trans Fuzzy Syst 21(1):113–132

    Article  Google Scholar 

  30. Xia MM, Xu ZS (2013) Group decision making based on intuitionistic multiplicative aggregation operators. Appl Math Model 37:5120–5133

    Article  MathSciNet  Google Scholar 

  31. Xu ZS (2007a) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  32. Xu ZS (2007b) Intuitionistic preference relations and their application in group decision making. Inf Sci 177:2363–2379

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  MathSciNet  MATH  Google Scholar 

  34. Yager RR (1988) On ordered weighted avergaing aggregation operators in multi-criteria decision making. IEEE Trans Syst Man Cybern 18(1):183–190

    Article  Google Scholar 

  35. Ye J (2009) Multicriteria fuzzy decision-making method based on a novel accuracy function under interval - valued intuitionistic fuzzy environment. Expert Syst Appl 36:6899–6902

    Article  Google Scholar 

  36. Yu D, Merigo JM, Zhou L (2013) Interval-valued multiplicative intuitionistic fuzzy preference relations. Int J Fuzzy Syst 15(4):412–422

    MathSciNet  Google Scholar 

  37. Yu S, Xu ZS (2014) Aggregation and decision making using intuitionistic multiplicative triangular fuzzy information. J Syst Sci Syst Eng 23:20–38

    Article  Google Scholar 

  38. Zhao X, Wei G (2013) Some intuitionistic fuzzy einstein hybrid aggregation operators and their application to multiple attribute decision making. Knowl Based Syst 37:472–479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Appendix

Appendix

Proof Property 4 As α i , β ∈ IMNs, so

$$\alpha_{i} \oplus \beta = \left<\frac{(1+2\mu_{i})(1+2\mu_{\beta})-1}{2}, \frac{2\left\{1-(1-\mu_{i}\nu_{i})(1-\mu_{\beta}\nu_{\beta}) \right\}}{(1+2\mu_{i})(1+2\mu_{\beta})-1} \right>$$

Therefore,

$$\begin{array}{@{}rcl@{}} \text{IFMIWA}(\alpha_{1}\oplus\beta, \alpha_{2}\oplus \beta, \ldots, \alpha_{n} \oplus \beta) &=& \left<\frac{\prod\limits_{i=1}^{n} \left\{(1+2\mu_{1})(1+2\mu_{\beta})\right\}^{\omega_{i}}-1}{2}, \frac{2\left\{1-\prod\limits_{i=1}^{n} \left\{(1-\mu_{i}\nu_{i})(1-\mu_{\beta}\nu_{\beta})\right\}^{\omega_{i}} \right\}}{\prod\limits_{i=1}^{n} \left\{(1+2\mu_{i})(1+2\mu_{\beta})\right\}^{\omega_{i}}-1} \right> \\ &=& \left< \frac{\prod\limits_{i=1}^{n} (1+2\mu_{i})^{\omega_{i}}(1+2\mu_{\beta})-1}{2}, \frac{2\left\{1-\prod\limits_{i=1}^{n} (1-\mu_{i}\nu_{i})^{\omega_{i}} (1-\mu_{\beta}\nu_{\beta}) \right\}}{\prod\limits_{i=1}^{n} (1+2\mu_{i})^{\omega_{i}}(1+2\mu_{\beta})-1} \right> \\ &=& \left< \frac{\prod\limits_{i=1}^{n} (1+2\mu_{i})^{\omega_{i}}-1}{2}, \frac{2\left\{1-\prod\limits_{i=1}^{n} (1-\mu_{i}\nu_{i})^{\omega_{i}}\right\}}{\prod\limits_{i=1}^{n} (1+2\mu_{i})^{\omega_{i}}-1} \right> \oplus \langle \mu_{\beta}, \nu_{\beta}\rangle \\ &=& \text{IFMIWA}(\alpha_{1},\alpha_{2}\ldots, \alpha_{n}) \oplus \beta \end{array} $$

Hence, IFMIWA(α 1β, α 2β,…, α n β) = IFMIWA(α 1, α 2…, α n ) ⊕ β.

Proof of Property 6: Since α i = 〈μ i , ν i 〉∈ IMNs for i = 1, 2,…, n. Therefore, for β > 0, we have

$$\beta \alpha_{i} = \left< \frac{(1+2\mu_{i})^{\beta}-1}{2}, \quad \frac{2\left\{1-(1-\mu_{i}\nu_{i})^{\beta}\right\}}{(1+2\mu_{i})^{\beta}-1} \right>$$

Therefore,

$$\begin{array}{@{}rcl@{}} \text{IFMIWA}(\beta \alpha_{1}, \beta \alpha_{2}, \ldots, \beta \alpha_{n}) &=&\left\langle \frac{\prod\limits_{i=1}^{n} \left( 1+2\frac{(1+2\mu_{i})^{\beta}-1}{2} \right)^{\omega_{i}}-1}{2}, \frac{2\left\{1-\prod\limits_{i=1}^{n} (1-\mu_{i}\nu_{i})^{\beta\omega_{i}}\right\}}{\prod\limits_{i=1}^{n} \left( 1+2\frac{(1+2\mu_{i})^{\beta}-1}{2} \right)^{\omega_{i}}-1} \right\rangle\\ &=& \left< \frac{\prod\limits_{i=1}^{n} \left( (1+2\mu_{i})^{\beta}\right)^{\omega_{i}}-1}{2}, \frac{2\left\{1-\prod\limits_{i=1}^{n} (1-\mu_{i}\nu_{i})^{\beta\omega_{i}}\right\}}{\prod\limits_{i=1}^{n} \left( (1+2\mu_{i})^{\beta}\right)^{\omega_{i}}-1} \right> \\ &=& \left< \frac{\left( \prod\limits_{i=1}^{n} (1+2\mu_{i})^{\omega_{i}}\right)^{\beta}-1}{2}, \frac{2\left\{1-\left( \prod\limits_{i=1}^{n}(1-\mu_{i}\nu_{i})^{\omega_{i}}\right)^{\beta} \right\}}{\left( \prod\limits_{i=1}^{n} (1+2\mu_{i})^{\omega_{i}}\right)^{\beta}-1} \right> \\ &=& \beta \, \left<\frac{\prod\limits_{i=1}^{n} (1+2\mu_{i})^{\omega_{i}}-1}{2}, \frac{2\left\{1-\prod\limits_{i=1}^{n} (1-\mu_{i}\nu_{i})^{\omega_{i}}\right\}}{\prod\limits_{i=1}^{n} (1+2\mu_{i})^{\omega_{i}}-1} \right> \\ &=& \beta \text{IFMIWA}(\alpha_{1},\alpha_{2}\ldots,\alpha_{n}) \end{array} $$

Hence, IFMIWA(βα 1, βα 2,…, βα n ) = β IFMIWA(α 1, α 2…, α n )

Proof of Property 6: As \(\alpha _{i}=\langle \mu _{\alpha _{i}}, \nu _{\alpha _{i}}\rangle \) and \(\beta =\langle \mu _{\beta _{i}}, \nu _{\beta _{i}}\rangle (i=1,2,\ldots ,n)\) be two collections of IMNs, then

$$\alpha_{i} \oplus \beta_{i} = \left< \frac{(1+2\mu_{\alpha_{i}})(1+2\mu_{\beta_{i}})-1}{2}, \frac{2\left[ 1- (1-\mu_{\alpha_{i}}\nu_{\alpha_{i}})(1-\mu_{\beta_{i}}\nu_{\beta_{i}}) \right]}{(1+2\mu_{\alpha_{i}})(1+2\mu_{\beta_{i}})-1} \right>$$

Therefore,

$$\begin{array}{@{}rcl@{}} && \text{IFMIWA}(\alpha_{1}\oplus \beta_{1}, \alpha_{2}\oplus\beta_{2}, \ldots, \alpha_{n}\oplus \beta_{n}) \\ &=&\left< \frac{\prod\limits_{i=1}^{n} \left( 1+2\frac{(1+2\mu_{\alpha_{i}})(1+2\mu_{\beta_{i}})-1}{2}\right)^{\omega_{i}}-1}{2}, \frac{2\left[1-\prod\limits_{i=1}^{n}\left\{(1-\mu_{\alpha_{i}}\nu_{\alpha_{i}})(1-\mu_{\beta_{i}}\nu_{\beta_{i}})\right\}^{\omega_{i}} \right]}{\prod\limits_{i=1}^{n} \left( 1+2\frac{(1+2\mu_{\alpha_{i}})(1+2\mu_{\beta_{i}})-1}{2}\right)^{\omega_{i}}-1} \right> \\ &=& \left< \frac{\prod\limits_{i=1}^{n} \{(1+2\mu_{\alpha_{i}})(1+2\mu_{\beta_{i}})\}^{\omega_{i}}-1}{2}, \frac{2\left[1-\prod\limits_{i=1}^{n}\left\{(1-\mu_{\alpha_{i}}\nu_{\alpha_{i}})(1-\mu_{\beta_{i}}\nu_{\beta_{i}})\right\}^{\omega_{i}} \right]}{\prod\limits_{i=1}^{n} \{(1+2\mu_{\alpha_{i}})(1+2\mu_{\beta_{i}})\}^{\omega_{i}}-1} \right> \\ &=& \left<\frac{\prod\limits_{i=1}^{n} (1+2\mu_{\alpha_{i}})^{\omega_{i}}\prod\limits_{i=1}^{n} (1+2\mu_{\beta_{i}})^{\omega_{i}}-1}{2}, \frac{2\left[1-\prod\limits_{i=1}^{n} (1-\mu_{\alpha_{i}}\nu_{\alpha_{i}})^{\omega_{i}} \prod\limits_{i=1}^{n} (1-\mu_{\beta_{i}}\nu_{\beta_{i}})^{\omega_{i}} \right]}{\prod\limits_{i=1}^{n} (1+2\mu_{\alpha_{i}})^{\omega_{i}}\prod\limits_{i=1}^{n} (1+2\mu_{\beta_{i}})^{\omega_{i}}-1} \right> \\ &=& \left<\frac{\prod\limits_{i=1}^{n} (1+2\mu_{\alpha_{i}})^{\omega_{i}}-1}{2}, \frac{2\left[1-\prod\limits_{i=1}^{n} (1-\mu_{\alpha_{i}}\nu_{\alpha_{i}})^{\omega_{i}}\right]}{\prod\limits_{i=1}^{n} (1+2\mu_{\alpha_{i}})^{\omega_{i}}-1} \right> \oplus \left< \frac{\prod\limits_{i=1}^{n} (1+2\mu_{\beta_{i}})^{\omega_{i}}-1}{2}, \frac{2\left[1-\prod\limits_{i=1}^{n} (1-\mu_{\beta_{i}}\nu_{\beta_{i}})^{\omega_{i}}\right]}{\prod\limits_{i=1}^{n} (1+2\mu_{\beta_{i}})^{\omega_{i}}-1} \right> \\ &=& \text{IFMIWA}(\alpha_{1},\alpha_{2}\ldots,\alpha_{n}) \oplus \text{IFMIWA}(\beta_{1},\beta_{2}\ldots,\beta_{n}) \end{array} $$

Hence, IFMIWA(α 1β 1,…, α n β n ) = IFMIWA(α 1,…, α n ) ⊕IFMIWA(β 1,…, β n )

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H. Generalized interaction aggregation operators in intuitionistic fuzzy multiplicative preference environment and their application to multicriteria decision-making. Appl Intell 48, 2120–2136 (2018). https://doi.org/10.1007/s10489-017-1066-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1066-1

Keywords

Navigation