[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Deformable 3d shape retrieval using a spectral geometric descriptor

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we propose a deformable 3D shape matching and retrieval approach using a spectral skeleton that encodes nonrigid object structures. This spectral skeleton is constructed from the second eigenfunction of the Laplace-Beltrami operator defined on the surface of a 3D shape, and thus it is invariant to isometric transformations. In addition to its intrinsic property, our proposed shape descriptor is compact, robust to noise, discriminative, and efficient to compute. We also present a graph matching framework by comparing the shortest paths between skeleton endpoints. Extensive experimental results demonstrate the feasibility of the proposed shape retrieval approach on three standard benchmarks of nonrigid 3D shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Grigorishin T, Abdel-Hamid G, Yang YH (1998) Skeletonization: an electrostatic field-based approach. Pattern Anal Applic:163–177

  2. Fomenko AT, Kunii TL (1997) Topological modeling for visualization. Springer-Verlag, Tokyo

    Book  MATH  Google Scholar 

  3. Milnor J, theory Morse (1963) Princeton University Press. New Jersey

  4. Min P, Kazhdan M, Funkhouser T (2004) A comparison of text and shape matching for retrieval of online 3D models. In: Proc ECDL, pp 209–220

  5. Siddiqi K, Shokoufandeh A, Dickinson SJ, Zucker SW (1999) Shock graphs and shape matching. Int Jour Computer Vision 35(1):13–32

    Article  Google Scholar 

  6. Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc SIGGRAPH, pp 203–212

  7. Shinagawa Y, Kunii TL, Kergosien YL (1991) Surface coding based on Morse theory. IEEE Comput Graph Appl 11(5):66–78

    Article  Google Scholar 

  8. Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S (2008) Retrieving articulated 3-D models using medial surfaces. Mach Vis Appl 19(4):261–275

    Article  MATH  Google Scholar 

  9. Cornea ND, Demirci MF, Silver D, Shokoufandeh A, Dickinson S, Kantor PB (2005) 3D object retrieval using many-to-many matching of curve skeletons. In: Proc. Int. Conf. Shape Modeling and Applications, pp 368–373

  10. Hassouna MS, Farag AA (2009) Variational curve skeletons using gradient vector flow. IEEE Trans Pattern Anal Mach Intell 31(12):2257–2274

    Article  Google Scholar 

  11. Tagliasacchi A, Zhang H, Cohen-Or D (2009) Curve skeleton extraction from incomplete point cloud. ACM Trans Graph 28(3)

  12. Ankerst M, Kastenmüller G, Kriegel H, Seidl T (1999) 3D shape histograms for similarity search and classification in spatial databases. In: Proc. Int. Sympo. Advances in Spatial Databases, pp 207–226

  13. Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21(4):807–832

    Article  MathSciNet  MATH  Google Scholar 

  14. Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. ACM Sympo Geometry Processing, pp 156–164

  15. Ben Hamza A, Krim H (2003) Geodesic object representation and recognitions. In: Proc Discrete Geometry for Computer Imagery, pp 378–387

  16. Ben Hamza A, Krim H (2006) Geodesic matching of triangulated surfaces. IEEE Trans Image Process 15(8):2249–2258

    Article  Google Scholar 

  17. Ion A, Artner NM, Peyré G, Kropatsch WG, Cohen LD (2011) Matching 2D and 3D articulated shapes using the eccentricity transform. Comput Vis Image Underst 115:817–834

    Article  Google Scholar 

  18. Chen D-Y., Tian X-P., Shen Y-T., Ouhyoung M (2003) On visual similarity based 3D model retrieval. Comput Graphics Forum 22(3):223–232

    Article  Google Scholar 

  19. Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The Princeton shape benchmark. In: Proc Shape Modeling International, pp 167–178

  20. Ni X, Garland M, Hart JC (2004) Fair morse functions for extracting the topological structure of a surface mesh. In: Proc. Int. Conf. Computer Graphics and Interactive Techniques, pp 613–622

  21. Tierny J, Vandeborre J-P., Daoudi M (2008) Partial 3D shape retrieval by Reeb pattern unfolding. Comput Graphics Forum 28(1):41–55

    Article  Google Scholar 

  22. Aouada D, Krim H (2010) Squigraphs for fine and compact modeling of 3-D shapes. IEEE Trans Image Process 19(2):306–321

    Article  MathSciNet  Google Scholar 

  23. Biasotti S, Giorgi D, Spagnuolo M, Falcidieno B (2007) Reeb graphs for shape analysis and applications. Theor Comput Sci 392(1-3):5–22

    Article  MathSciNet  MATH  Google Scholar 

  24. Pascucci V, Scorzelli G, Bremer PT, Mascarenhas A (2007) Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans Graph 26(3)

  25. Patane G, Spagnuolo M, Falcidieno B (2009) A minimal contouring approach to the computation of the Reeb Graph. IEEE Trans Vis Comput Graph 15(4):583–595

    Article  Google Scholar 

  26. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:23992434

    MathSciNet  MATH  Google Scholar 

  27. Lévy B (2006) Laplace-Beltrami eigenfunctions: Towards an algorithm that understands geometry. In: Proc. Conf. Shape Modeling and Applications

  28. Reuter M, Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions (2010). Int J Comput Vis 89(2):287–308

    Article  Google Scholar 

  29. Rustamov RM (2007) Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proc Symp. on Geometry processing, pp 225–233

  30. Bronstein AM, Bronstein MM, Guibas L, Ovsjanikov M (2011) Shape Google: Geometric words and expressions for invariant shape retrieval. ACM Trans Graph 30(1)

  31. Tarmissi K, Ben Hamza A (2009) Information-theoretic hashing of 3D objects using spectral graph theory. Expert Systems with Applications 36(5):9409–9414

    Article  Google Scholar 

  32. Sun J, Ovsjanikov M, Guibas L (2009) A concise and provably informative multi-scale signature-based on heat diffusion. Comput Graphics Forum 28(5):1383–1392

    Article  Google Scholar 

  33. Gȩbal K, Bærentzen JA, Aanæs H, Larsen R (2009) Shape analysis using the auto diffusion function. Comput Graphics Forum 28(5):1405–1513

    Article  Google Scholar 

  34. Shi Y, Lai R, Krishna S, Sicotte N, Dinov I, Toga AW (2008) Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons. In: Proc CVPR Workshops, pp 23–28

  35. Aubry M, Schlickewei U, Cremers D (2011) The wave kernel signature: A quantum mechanical approach to shape analysis. In: Proc Computational Methods for the Innovative Design of Electrical Devices, pp 1626–1633

  36. Li C, Ben Hamza A (2013) A multiresolution descriptor for deformable 3D shape retrieval. Vis Comput 29(6):513–524

    Article  Google Scholar 

  37. Zhong M, Qin H (2014) Sparse approximation of 3D shapes via spectral graph wavelets. Vis Comput 30 (8):751–761

    Article  Google Scholar 

  38. Li C, Ben Hamza A (2014) Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: A comparative survey. Multimedia Systems 20(3):253281

    Article  Google Scholar 

  39. Mohamed W, Ben Hamza A (2012) Reeb graph path dissimilarity for 3D object matching and retrieval. Vis Comput 28(3):305–318

    Article  Google Scholar 

  40. Chung MK, Taylor J (2004) Diffusion smoothing on brain surface via finite element method. In: Proc. IEEE Int. Sympo. Biomedical Imaging: Nano to Macro, pp 432–435

  41. Qiu A, Bitouk D, Miller MI (2006) Smooth functional and structural maps on the neocortex via orthonormal Bases of the LaplaceBeltrami operator. IEEE Trans Med Imaging 25(10):1296–1306

    Article  Google Scholar 

  42. Uhlenbeck K (1976) Generic properties of eigenfunctions. Am J Math 98(4):1059–1078

    Article  MathSciNet  MATH  Google Scholar 

  43. Bai X, Latecki LJ (2008) Path similarity skeleton graph matching. IEEE Trans Pattern Anal Mach Intell 30(7):1282–1292

    Article  Google Scholar 

  44. Demirci MF, Shokoufandeh A, Keselman Y, Bretzner L, Dickinson S (2006) Object recognition as many-to-many feature matching. Int J Comput Vis 69(2):203–222

    Article  MATH  Google Scholar 

  45. Bai X, Latecki LJ, Liu W-Y (2007) Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans Pattern Anal Mach Intell 29(3):449–462

    Article  Google Scholar 

  46. Ling H, Jacobs DW (2007) Shape classification using inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299

    Article  Google Scholar 

  47. Rosenberg S (1997) The Laplacian on a Riemannian Manifold. Cambridge University Press

  48. Gallot S, Hulin D, Lafontaine J (1990) Riemannian Geometry. Springer-Verlag

  49. Wardetzky M, Mathur S, Kälberer F, Grinspun E (2007) Discrete Laplace operators: no free lunch. In: Proc Eurographics Symposium on Geometry processing, pp 33–37

  50. Kac M (1966) Can one hear the shape of a drum Am Math Mon 73(4):1–23

    Article  MathSciNet  MATH  Google Scholar 

  51. Meyer M, Desbrun M, Schröder P, Barr A (2003) Discrete differential-geometry operators for triangulated 2-manifolds. Visual Mathematics III:35–57

  52. Kreyszig (1968) Introduction to Differentiable Geometry and Riemannian Geometry. Academic Press

  53. Boothby WM (1986) An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press

  54. Krim H, Ben Hamza A (2015) Geometric methods in signal and image analysis. Cambridge University Press

  55. Gordon C, Webb D (1996) You can’t hear the shape of a drum. Am Sci 84(1):46–55

    Google Scholar 

  56. Lian Z, Zhang J, Choi S, ElNaghy H, El-Sana J, Furuya T, Giachetti A, Guler RA, Isaia L, Lai L, Li C, Li H, Limberger FA, Martin R, Nakanishi RU, Neto AP, Nonato LG, Ohbuchi R, Pevzner4 K, Pickup D, Rosin P, Sharf A, Sun L, Sun X, Tari S, Unal G, Wilson RC (2015) SHREC’15 Track: Non-rigid 3D Shape Retrieval. In: Proc Eurographics Workshop on 3D Object Retrieval

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Hamza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, W., Hamza, A.B. Deformable 3d shape retrieval using a spectral geometric descriptor. Appl Intell 45, 213–229 (2016). https://doi.org/10.1007/s10489-015-0746-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-015-0746-y

Keywords

Navigation