[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Skin cancer extraction with optimum fuzzy thresholding technique

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper discusses a new approach to segment different types of skin cancers using fuzzy logic approach. The traditional skin cancer segmentation involves the analysis of image features to delineate the cancerous region from the normal skin. Using low level features such as colour and intensity, segmentation can be done by obtaining a threshold level to separate the two regions. Methods like Otsu optimisation provide a quick and simple process to optimise such threshold level; however this process is prone to the lighting and skin tone variations. Fuzzy clustering algorithm has also been widely used in image processing due to its ability to model the fuzziness of human visual perception. Classical fuzzy C means (FCM) clustering algorithm has been applied to image segmentation with good results; however, the classical FCM is based on type-1 fuzzy sets and is unable to handle uncertainties in the images. In this paper, we proposed an optimum threshold segmentation algorithm based on type-2 fuzzy sets algorithms to delineate the cancerous area from the skin images. By using the 3D colour constancy algorithm, the effect of colour changes and shadows due to skin tone variation in the image can be significantly reduced in the preprocessing stage. We applied the optimum thresholding technique to the preprocessed image over the RGB channels, and combined individual results to achieve the overall skin cancer segmentation. Compared to the Otsu algorithm, the proposed method is less affected by the shadows and skin tone variations. The results also showed more tolerance at the boundary of the cancerous area. Compared with the type-1 FCM algorithm, the proposed method significantly reduced the segmentation error at the normal skin regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6A
Fig. 6B
Fig. 6C

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. An J, Chen YPP (2008) Finding edging genes from microarray data. J Biotechnol 135(3):233–240

    Article  Google Scholar 

  2. Aribarg T, Supratid S, Lursinsap C (2012) Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl Intell 37(3):357–376

    Article  Google Scholar 

  3. Bergman R, Nachlieli H (2011) Perceptual segmentation: combine image segmentation with object tagging. IEEE Trans Image Process 20(6):1668–1681

    Article  MathSciNet  Google Scholar 

  4. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  5. Bustince H, Barrenechea E, Pagola M (2007) Image thresholding using restricted equivalence functions and maximizing the measures of similarity. Fuzzy Sets Syst 158(5)

  6. Bustince H, Pagola M, Barrenechea E, Fernandez J, Melo-Pinto P, Couto P, Tizhoosh HR, Montero J (2010) Ignorance functions. An application to the calculation of the threshold in prostate ultrasound images. Fuzzy Sets Syst 161(1)

  7. Campadelli P, Casiraghi E, Oratissoli S (2010) A segmentation framework for abdominal organs from CT scans. Artif Intell Med 50(1):3–11

    Article  Google Scholar 

  8. Carrara M, Bono A, Bartolic (2007) Multispectral imaging and artificial neural network: mimicking the management decision of the clinician facing pigmented skin lesion. Phys Med Biol 149:2599–2613

    Article  Google Scholar 

  9. Chen Y, Timms P, Chen YPP (2007) CIDB: chlamydia interactive database for cross-querying genomics, transcriptomics and proteomics data. Biomol Eng 24(6):603–608

    Article  Google Scholar 

  10. Chuang KS, Tzeng HL, Chen S, Wu j, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15

    Article  Google Scholar 

  11. Cruz-Roa A, Caicedo JC, Gonzalez FA (2011) Visual pattern mining in histology image collections using bag of features. Artif Intell Med 52(2):91–106

    Article  Google Scholar 

  12. Cuevas E, Gonzalez M (2013) Multi-circle detection on images inspired y collective animal behavior. Appl Intell 30(1):101–120

    Article  Google Scholar 

  13. D’Alessandro B, Dhawan AP (2012) 3-D volume reconstruction of skin lesions for melanin and blood volume estimation and lesion severity analysis. IEEE Trans Med Imaging 31(11):2083–2092

    Article  Google Scholar 

  14. Dobrescu R, Dobrescu M, Mocanu S, Popescu D (2010) Medical image classification for skin cancer diagnosis based on combined texture and fractal analysis. WSEAS Trans Biol Biomed 7(3):223–232

    Google Scholar 

  15. Garnavi R, Aldeen M, Celebi ME, Variqos G, Finch S Border detection in dermoscopy images using hybrid thresholding on optimised colour channels. Comput Med Imaging Graph 35(2):105–115

  16. Gonzales R, Woods R (2008) Digital image processing, 3rd edn. Pearson/ Prentice Hall, Upper Saddle River

    Google Scholar 

  17. Hosseini R, Qanadli SD, Barman S, Mazinani M, Ellis T, Dehmeshki J (2012) An automatic approach for learning and tuning Gaussian interval type-2 fuzzy membership functions applied to lung CAD classification system. IEEE Trans Fuzzy Syst 20(2):224–234

    Article  Google Scholar 

  18. Hung W-L, Chen D-H, Yang M-S (2011) Suppressed fuzzy-soft learning vector quantization for MRI segmentation. Artif Intell Med 52(1):33–43

    Article  Google Scholar 

  19. John RI, Coupland S (2007) Type-2 fuzzy logic: a historical view. IEEE Comput Intell 2(1):57–62

    Article  Google Scholar 

  20. Kumar A, Kaur J (2012) Extract fuzzy optimal solution of fully fuzzy linear programming problems with unrestricted fuzzy variables. Appl Intell 37(1):145–154

    Article  Google Scholar 

  21. Lopes NV, Couto PAM d., Bustince H, Melo-Pinto P (2010) Automatic histogram threshold using fuzzy measures. IEEE Trans Image Process 19(1)

  22. Luac R, Plataniotis KN (2007) Color image processing–methods and application. Taylor and Francis, London

    Google Scholar 

  23. Mirghasemi S, Yazdi H, Lotfizad M (2012) A target-based color space for sea target detection 36(4):960–978

  24. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern SMC-9(1)

  25. Pagola M, Lopez-Molina C, Fernandez J, Barrenechea E, Bustince H (2011) Interval type-2 fuzzy sets constructed from several membership functions: application to the fuzzy thresholding algorithm. IEEE Trans Fuzzy Syst 99:1–15

    Google Scholar 

  26. Ratnasingam S, Martin McGinnity T (2012) Chromaticity space for illuminant invariant recognition. IEEE Trans Image Process 21(8):3612–3623

    Article  MathSciNet  Google Scholar 

  27. Romero FP, Caballero I, Serrano-Guerrero J, Olivas JA (2012) An approach to web-based personal health records filtering using fuzzy prototypes and data quality criteria. Inf Process Manag 48(3)

  28. Rong J, Li G, Chen YPP (2009) Acoustic feature selection for automatic emotion recognition from speech. Inf Process Manag 45(3):451–466

    Article  Google Scholar 

  29. Saha S, Bandyopadhyay S (2011) Automatic MR brain image segmentation using a multiseed based multiobjecitve clustering approach 35(3):411–427

  30. Shi Y, Gao Y, Wang R, Zhang Y, Wang D (2013) Transductive cost-sensitive lung cancer image classification 38(1):16–28

  31. Sirakov NM, Mete M, Chakrader NS (2011) Automatic boundary detection and symmetry calculation in dermoscopy images of skin lesions. In: Proceedings on IEEE international conference on image processing, pp 1605–1608

    Google Scholar 

  32. Son C (2013) Similarity measuring strategy of image patterns based on fuzzy entropy and energy variations in intelligent robot’s manipulative task. Appl Intell 38(2):131–145

    Article  Google Scholar 

  33. Song XF, Chen WM, Chen YPP, Jiang B (2009) Candidate working set strategy based SMO algorithm in support vector machine. Inf Process Manag 45(5):584–592

    Article  Google Scholar 

  34. Tang J, Guo S (2011) Segmentation of skin cancer using external force filtering snake based on wavelet diffusion. In: Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies. Springer, Berlin, pp 129–142

    Chapter  Google Scholar 

  35. Umbaugh SE, Moss RH, Stoecker WV (1992) An automatic colour segmentation algorithm with application to identification of skin tumor borders. Comput Med Imaging Graph 16(3):227–238

    Article  Google Scholar 

  36. Unnikrishnan R, Pantofaru C, Hebert M (2005) A measure for objective evaluation of image segmentation algorithms. In: CVPR workshop on computer vision applications, pp 394–400

    Google Scholar 

  37. Wang H, Moss R, Chen X, Stanley R, Stoecker W, Celebi M, Malters J, Grichnik J, Marghoob A, Rabinovitz H, Menzies S, Szalapski T (2010) Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images. Comput Med Imaging Graph 35:116–120

    Article  Google Scholar 

  38. Wheless L, Black J, Alberg AJ (2010) Nonmelanoma skin cancer and the risk of second primary cancers: a systematic review. Cancer Epidemiol Biomark Prev 19:1686–1695

    Article  Google Scholar 

  39. Wu J, Xiong H, Liu C, Chen J (2012) A generalization of distance functions for fuzzy c-means clustering with centroids of arithmetic means. IEEE Trans Fuzzy Syst, I 20(3):557–571

    Google Scholar 

  40. Yaakob S, Jain L (2012) An insect classification analysis based on shape features using quality threshold ARTMAP and moment invariant. Appl Intell 37(1):12–30

    Article  Google Scholar 

  41. Yang Y-B, Li Y-N, Pan L-Y, Li N, He G (2013) Image retrieval based on augmented relational graph representation. Appl Intell 38(4):489–501

    Article  Google Scholar 

  42. Yeh CY, Jengm WHR, Lee S-J (2011) An enhanced type-reduction algorithm for type-2 fuzzy sets. IEEE Trans Fuzzy Syst 19(2):227–240

    Article  Google Scholar 

  43. Yildirim MT, Basturk A, Yuksel ME (2008) Impulsive noise removal from digital images by a detail-preserving filter based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst 16(4):920–928

    Article  Google Scholar 

  44. Yuksel ME, Borlu M (2009) Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst 17(4):976–982

    Article  Google Scholar 

  45. Zhou H, Schaefer G, Celebi ME, Lin F, Liu T (2011) Gradient vector flow with mean shift for skin lesion segmentation. Comput Med Imaging Graph 35(2):121–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ping Phoebe Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Chen, YP.P. Skin cancer extraction with optimum fuzzy thresholding technique. Appl Intell 40, 415–426 (2014). https://doi.org/10.1007/s10489-013-0474-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0474-0

Keywords