[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Maximal Lindelöf Locales

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

For a subfit frame L, let \({\mathcal {S}}_{\mathfrak {c}}(L)\) denote the complete Boolean algebra whose elements are the sublocales of L that are joins of closed sublocales. Identifying every element of L with the open sublocale it determines allows us to view L as a subframe of \({\mathcal {S}}_{\mathfrak {c}}(L)\). With this backdrop, we say L is maximal Lindelöf if it is Lindelöf and whenever \(L\subseteq M\), for some Lindelöf subframe M of \({\mathcal {S}}_{\mathfrak {c}}(L)\), then \(L=M\). Recall that a topological space \((X,\tau )\) is maximal Lindelöf if it is Lindelöf, and there is no strictly finer topology \(\rho \) on X such that \((X,\rho )\) is a Lindelöf space. We show that a space is maximal Lindelöf if and only if the frame of its open subsets is maximal Lindelöf. We then characterize maximal Lindelöf frames internally. Among regular frames, we show that the maximal Lindelöf frames are precisely the Lindelöf ones in which every \(F_\sigma \)-sublocale (meaning a join of countably many closed sublocales) is closed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, R.N., Picado, J., Pultr, A.: Notes on exact meets and joins. Appl. Categ. Struct. 22, 699–714 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ball, R.N., Walters-Wayland, J.: \(C\)- and \(C^{*}\)-quotients in pointfree topology. Dissertation Mathematics (Rozprawy Matematyczne), vol. 412, 62 pp (2002)

  3. Banaschewski, B.: The real numbers in pointfree topology, Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 94 pp (1997)

  4. Banaschewski, B., Pultr, A.: Booleanization. Cah. Topol. Géom. Differ. Catég. 37, 41–60 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Cameron, D.E.: Maximal and minimal topologies. Trans. Am. Math. Soc. 160, 229–248 (1971)

    Article  MathSciNet  Google Scholar 

  6. Cameron, D.E.: A class of maximal topologies. Pac. J. Math. 700, 229–248 (1977)

    MathSciNet  Google Scholar 

  7. Dube, T.: When Boole commutes with Hewitt and Lindelöf. Appl. Categ. Struct. 25, 1097–1111 (2017)

    Article  Google Scholar 

  8. Ferreira, M.J., Picado, J., Pinto, S.M.: Remainders in pointfree topology. Topol. Appl. 245, 21–45 (2018)

    Article  MathSciNet  Google Scholar 

  9. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)

    Book  Google Scholar 

  10. Gutiérrez García, J., Kubiak, T.: A preservation result for completely regular locales. Topol. Appl. 168, 40–45 (2014)

    Article  MathSciNet  Google Scholar 

  11. García, J. Gutiérrez, Kubiak, T., Picado, J.: On hereditary properties of extremally disconnected frames and normal frames. Topol. Appl. (to appear)

  12. García, J.G., Picado, J.: On the parallel between normality and extremal disconnectedness. J. Pure Appl. Algebra 218, 784–803 (2014)

    Article  MathSciNet  Google Scholar 

  13. Isbell, J.R.: Graduation and dimension in locales. London Mathematical Society Lecture Notes Series 93, pp. 195–210. Cambridge University Press (1985)

  14. Madden, J., Vermeer, J.: Lindelöf locales and realcompactness. Math. Proc. Camb. Philos. Soc. 99, 473–480 (1986)

    Article  Google Scholar 

  15. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  16. Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Springer, Basel (2012)

    Book  Google Scholar 

  17. Picado, J., Pultr, A., Tozzi, A.: Joins of closed sublocales. Houst. J. Math. 45, 21–38 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168, 309–326 (2002)

    Article  MathSciNet  Google Scholar 

  19. Raha, A.B.: Maximal topologies. J. Aust. Math. Soc. 15, 279–290 (1973)

    Article  MathSciNet  Google Scholar 

  20. Smythe, N., Wilkins, C.A.: Minimal Hausdorff and maximal compact spaces. J. Aust. Math. Soc. 3, 167–171 (1963)

    Article  MathSciNet  Google Scholar 

  21. Thomas, J.P.: Maximal connected topologies. J. Aust. Math. Soc. 8, 700–705 (1968)

    Article  MathSciNet  Google Scholar 

  22. Vermeulen, J.J.C.: Proper maps of locales. J. Pure Appl. Algebra 92, 79–107 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is greatly indebted to the referee for pointing out some crucial omissions and also for several helpful comments that resulted in a much improved paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themba Dube.

Additional information

Communicated by Jorge Picado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author acknowledges funding from the National Research Foundation of South Africa through Grant 113829.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dube, T. Maximal Lindelöf Locales. Appl Categor Struct 27, 687–702 (2019). https://doi.org/10.1007/s10485-019-09575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-019-09575-9

Keywords

Mathematics Subject Classification

Navigation