Abstract
For a subfit frame L, let \({\mathcal {S}}_{\mathfrak {c}}(L)\) denote the complete Boolean algebra whose elements are the sublocales of L that are joins of closed sublocales. Identifying every element of L with the open sublocale it determines allows us to view L as a subframe of \({\mathcal {S}}_{\mathfrak {c}}(L)\). With this backdrop, we say L is maximal Lindelöf if it is Lindelöf and whenever \(L\subseteq M\), for some Lindelöf subframe M of \({\mathcal {S}}_{\mathfrak {c}}(L)\), then \(L=M\). Recall that a topological space \((X,\tau )\) is maximal Lindelöf if it is Lindelöf, and there is no strictly finer topology \(\rho \) on X such that \((X,\rho )\) is a Lindelöf space. We show that a space is maximal Lindelöf if and only if the frame of its open subsets is maximal Lindelöf. We then characterize maximal Lindelöf frames internally. Among regular frames, we show that the maximal Lindelöf frames are precisely the Lindelöf ones in which every \(F_\sigma \)-sublocale (meaning a join of countably many closed sublocales) is closed.
Similar content being viewed by others
References
Ball, R.N., Picado, J., Pultr, A.: Notes on exact meets and joins. Appl. Categ. Struct. 22, 699–714 (2014)
Ball, R.N., Walters-Wayland, J.: \(C\)- and \(C^{*}\)-quotients in pointfree topology. Dissertation Mathematics (Rozprawy Matematyczne), vol. 412, 62 pp (2002)
Banaschewski, B.: The real numbers in pointfree topology, Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 94 pp (1997)
Banaschewski, B., Pultr, A.: Booleanization. Cah. Topol. Géom. Differ. Catég. 37, 41–60 (1996)
Cameron, D.E.: Maximal and minimal topologies. Trans. Am. Math. Soc. 160, 229–248 (1971)
Cameron, D.E.: A class of maximal topologies. Pac. J. Math. 700, 229–248 (1977)
Dube, T.: When Boole commutes with Hewitt and Lindelöf. Appl. Categ. Struct. 25, 1097–1111 (2017)
Ferreira, M.J., Picado, J., Pinto, S.M.: Remainders in pointfree topology. Topol. Appl. 245, 21–45 (2018)
Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)
Gutiérrez García, J., Kubiak, T.: A preservation result for completely regular locales. Topol. Appl. 168, 40–45 (2014)
García, J. Gutiérrez, Kubiak, T., Picado, J.: On hereditary properties of extremally disconnected frames and normal frames. Topol. Appl. (to appear)
García, J.G., Picado, J.: On the parallel between normality and extremal disconnectedness. J. Pure Appl. Algebra 218, 784–803 (2014)
Isbell, J.R.: Graduation and dimension in locales. London Mathematical Society Lecture Notes Series 93, pp. 195–210. Cambridge University Press (1985)
Madden, J., Vermeer, J.: Lindelöf locales and realcompactness. Math. Proc. Camb. Philos. Soc. 99, 473–480 (1986)
Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Springer, Basel (2012)
Picado, J., Pultr, A., Tozzi, A.: Joins of closed sublocales. Houst. J. Math. 45, 21–38 (2019)
Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168, 309–326 (2002)
Raha, A.B.: Maximal topologies. J. Aust. Math. Soc. 15, 279–290 (1973)
Smythe, N., Wilkins, C.A.: Minimal Hausdorff and maximal compact spaces. J. Aust. Math. Soc. 3, 167–171 (1963)
Thomas, J.P.: Maximal connected topologies. J. Aust. Math. Soc. 8, 700–705 (1968)
Vermeulen, J.J.C.: Proper maps of locales. J. Pure Appl. Algebra 92, 79–107 (1994)
Acknowledgements
The author is greatly indebted to the referee for pointing out some crucial omissions and also for several helpful comments that resulted in a much improved paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jorge Picado.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The author acknowledges funding from the National Research Foundation of South Africa through Grant 113829.
Rights and permissions
About this article
Cite this article
Dube, T. Maximal Lindelöf Locales. Appl Categor Struct 27, 687–702 (2019). https://doi.org/10.1007/s10485-019-09575-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-019-09575-9