[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Flasque Sheaves and Flasque Modules

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We show that each sheaf of modules admits a flasque hull, such that homomorphisms into flasque sheaves factor over the flasque hull. On the other hand, we give examples of modules over non-noetherian rings that do not inject into flasque modules. This reveals the impossibility to extend the proof of Serre’s vanishing result for affine schemes with flasque quasicoherent resolutions to the non-noetherian setting. However, we outline how hypercoverings can be used for a reduction to the noetherian case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M., Grothendieck, A., Verdier, J.-L. (eds.): Théorie des topos et cohomologie étale des schémas (SGA 4) Tome 2. Springer, Berlin (1973)

    Google Scholar 

  2. Berthelot, P., Grothendieck, A., Illusie, L. (eds.): Théorie des intersections et théorème de Riemann–Roch (SGA 6). Springer, Berlin (1971)

    Google Scholar 

  3. Bredon, G.: Sheaf Theory. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  4. Campbell, J.: A note on flasque sheaves. Bull. Austral. Math. Soc. 2, 229–232 (1970)

    Article  MathSciNet  Google Scholar 

  5. Godement, R.: Topologie algébrique et théorie des faisceaux. Hermann, Paris (1964)

    MATH  Google Scholar 

  6. Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J. 9, 119–221 (1957)

    MathSciNet  MATH  Google Scholar 

  7. Grothendieck, A.: Éléments de géométrie algébrique III: Étude cohomologique des faiscaux cohérent. Publ. Math., Inst. Hautes Étud. Sci. 11, 5–167 (1961)

    Article  Google Scholar 

  8. Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). North-Holland, Amsterdam (1968)

    MATH  Google Scholar 

  9. Hartshorne, R.: Local Cohomology. Springer, Berlin (1967)

    Book  Google Scholar 

  10. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    Book  Google Scholar 

  11. Hovey, M.: Model Categories. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  12. Kashiwara, M., Schapira, P.: Categories and Sheaves. Springer, Berlin (2006)

    Book  Google Scholar 

  13. Kempf, G.: Some elementary proofs of basic theorems in the cohomology of quasicoherent sheaves. Rocky Mountain J. Math. 10, 637–645 (1980)

    Article  MathSciNet  Google Scholar 

  14. Neeman, A.: Algebraic and Analytic Geometry. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  15. Quillen, D.: Homotopical Algebra. Springer, Berlin (1967)

    Book  Google Scholar 

  16. Thomason, R., Trobaugh, T.: Higher algebraic \(K\)-theory of schemes and of derived categories. In: Cartier, P., et al. (eds.) The Grothendieck Festschrift III, pp. 247–435. Birkhäuser, Boston (1990)

    Chapter  Google Scholar 

  17. Verra, A.: Moduli iniettivi e fasci flasques su uno schema affine. Rend. Sem. Mat. Univ. Politec. Torino 33, 131–141 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I wish to thank the referee and the editor for useful suggestions, and for pointing out Quillen’s small object argument in [11] and Kempf’s proof for Serre Vanishing in [13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schröer.

Additional information

Communicated by Amnon Neeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröer, S. On Flasque Sheaves and Flasque Modules. Appl Categor Struct 26, 1113–1122 (2018). https://doi.org/10.1007/s10485-018-9520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-018-9520-8

Keywords

Mathematics Subject Classification

Navigation