[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Rickart and Dual Rickart Objects in Abelian Categories: Transfer via Functors

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We study the transfer of (dual) relative Rickart properties via functors between abelian categories, and we deduce the transfer of (dual) relative Baer property. We also give applications to Grothendieck categories, comodule categories and (graded) module categories, with emphasis on endomorphism rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azumaya, G.: Finite splitness and finite projectivity. J. Algebra 106, 114–134 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Castaño Iglesias, F.: On a natural duality between Grothendieck categories. Commun. Algebra 36, 2079–2091 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Castaño Iglesias, F., Gómez-Torrecillas, J., Wisbauer, R.: Adjoint functors and equivalences of subcategories. Bull. Sci. Math. 127, 379–395 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crivei, S.: \(\Sigma \)-extending modules, \(\Sigma \)-lifting modules, and proper classes. Commun. Algebra 36, 529–545 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crivei, S.: Essential and retractable Galois connections. J. Algebra Appl. 12, 1350017 (2013). (14 pages)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crivei, S., Kör, A.: Rickart and dual Rickart objects in Abelian categories. Appl. Categ. Struct. 24, 797–824 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf Algebras: An Introduction. Marcel Dekker, New York (2001)

    MATH  Google Scholar 

  8. Dăscălescu, S., Năstăsescu, C., Tudorache, A., Dăuş, L.: Relative regular objects in categories. Appl. Categ. Struct. 14, 567–577 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dăscălescu, S., Năstăsescu, C., Tudorache, A.: A note on regular objects in Grothendieck categories. Arab. J. Sci. Eng. 36, 957–962 (2011)

    Article  MathSciNet  Google Scholar 

  10. Dăuş, L.: Relative regular modules. Applications to von Neumann regular rings. Appl. Categ. Struct. 19, 859–863 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra 49, 103–116 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freyd, P.: Abelian categories, Harper and Row, New York, 1964. Republished in: Reprints in Theory and Applications of Categories, no. 3 (2003)

  13. García, J.L., Martínez, J.: When is the category of flat modules abelian? Fundam. Math. 147, 83–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaplansky, I.: Rings of Operators. W.A. Benjamin Inc, New York, Amsterdam (1968)

    MATH  Google Scholar 

  15. Lee, G., Rizvi, S.T., Roman, C.: Rickart modules. Commun. Algebra 38, 4005–4027 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, G., Rizvi, S.T., Roman, C.: Dual Rickart modules. Commun. Algebra 39, 4036–4058 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, G., Rizvi, S.T., Roman, C.: Direct sums of Rickart modules. J. Algebra 353, 62–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, G., Rizvi, S.T., Roman, C.: Modules whose endomorphism rings are von Neumann regular. Commun. Algebra 41, 4066–4088 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maeda, S.: On a ring whose principal right ideals generated by idempotents form a lattice. J. Sci. Hiroshima Univ. Ser. A 24, 509–525 (1960)

    MathSciNet  MATH  Google Scholar 

  20. Năstăsescu, C., Van Oystaeyen, F.: Methods of graded rings, Lect. Notes Math, vol. 1836. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  21. Olteanu, G.: Baer-Galois connections and applications. Carpath. J. Math. 30, 225–229 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Pardo, G.J.L., Asensio, P.A.G.: Indecomposable decompositions of finitely presented pure-injective modules. J. Algebra 192, 200–208 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rizvi, S.T., Roman, C.: Baer and quasi-Baer modules. Commun. Algebra 32, 103–123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rizvi, S.T., Roman, C.: On direct sums of Baer modules. J. Algebra 321, 682–696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stenström, B.: Rings of quotients, Grundlehren der Math, vol. 217. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  26. Tütüncü, K.D., Tribak, R.: On dual Baer modules. Glasgow Math. J. 52, 261–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tütüncü, D.K., Smith, P.F., Toksoy, S.E.: On dual Baer modules. Contemp. Math. 609, 173–184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. von Neumann, J.: On regular rings. Proc. Natl. Acad. Sci. USA 22, 707–712 (1936)

    Article  MATH  Google Scholar 

  29. Zelmanowitz, J.: Regular modules. Trans. Am. Math. Soc. 163, 341–355 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Septimiu Crivei.

Additional information

Communicated by M. M. Clementino.

We would like to thank the referee for comments and suggestions, which improved the presentation of the paper. We acknowledge the support of the Grant PN-II-ID-PCE-2012-4-0100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crivei, S., Olteanu, G. Rickart and Dual Rickart Objects in Abelian Categories: Transfer via Functors. Appl Categor Struct 26, 681–698 (2018). https://doi.org/10.1007/s10485-017-9509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-017-9509-8

Keywords

Mathematics Subject Classification

Navigation