Abstract
We study the transfer of (dual) relative Rickart properties via functors between abelian categories, and we deduce the transfer of (dual) relative Baer property. We also give applications to Grothendieck categories, comodule categories and (graded) module categories, with emphasis on endomorphism rings.
Similar content being viewed by others
References
Azumaya, G.: Finite splitness and finite projectivity. J. Algebra 106, 114–134 (1987)
Castaño Iglesias, F.: On a natural duality between Grothendieck categories. Commun. Algebra 36, 2079–2091 (2008)
Castaño Iglesias, F., Gómez-Torrecillas, J., Wisbauer, R.: Adjoint functors and equivalences of subcategories. Bull. Sci. Math. 127, 379–395 (2003)
Crivei, S.: \(\Sigma \)-extending modules, \(\Sigma \)-lifting modules, and proper classes. Commun. Algebra 36, 529–545 (2008)
Crivei, S.: Essential and retractable Galois connections. J. Algebra Appl. 12, 1350017 (2013). (14 pages)
Crivei, S., Kör, A.: Rickart and dual Rickart objects in Abelian categories. Appl. Categ. Struct. 24, 797–824 (2016)
Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf Algebras: An Introduction. Marcel Dekker, New York (2001)
Dăscălescu, S., Năstăsescu, C., Tudorache, A., Dăuş, L.: Relative regular objects in categories. Appl. Categ. Struct. 14, 567–577 (2006)
Dăscălescu, S., Năstăsescu, C., Tudorache, A.: A note on regular objects in Grothendieck categories. Arab. J. Sci. Eng. 36, 957–962 (2011)
Dăuş, L.: Relative regular modules. Applications to von Neumann regular rings. Appl. Categ. Struct. 19, 859–863 (2011)
Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra 49, 103–116 (1987)
Freyd, P.: Abelian categories, Harper and Row, New York, 1964. Republished in: Reprints in Theory and Applications of Categories, no. 3 (2003)
García, J.L., Martínez, J.: When is the category of flat modules abelian? Fundam. Math. 147, 83–91 (1995)
Kaplansky, I.: Rings of Operators. W.A. Benjamin Inc, New York, Amsterdam (1968)
Lee, G., Rizvi, S.T., Roman, C.: Rickart modules. Commun. Algebra 38, 4005–4027 (2010)
Lee, G., Rizvi, S.T., Roman, C.: Dual Rickart modules. Commun. Algebra 39, 4036–4058 (2011)
Lee, G., Rizvi, S.T., Roman, C.: Direct sums of Rickart modules. J. Algebra 353, 62–78 (2012)
Lee, G., Rizvi, S.T., Roman, C.: Modules whose endomorphism rings are von Neumann regular. Commun. Algebra 41, 4066–4088 (2013)
Maeda, S.: On a ring whose principal right ideals generated by idempotents form a lattice. J. Sci. Hiroshima Univ. Ser. A 24, 509–525 (1960)
Năstăsescu, C., Van Oystaeyen, F.: Methods of graded rings, Lect. Notes Math, vol. 1836. Springer, Berlin (2004)
Olteanu, G.: Baer-Galois connections and applications. Carpath. J. Math. 30, 225–229 (2014)
Pardo, G.J.L., Asensio, P.A.G.: Indecomposable decompositions of finitely presented pure-injective modules. J. Algebra 192, 200–208 (1997)
Rizvi, S.T., Roman, C.: Baer and quasi-Baer modules. Commun. Algebra 32, 103–123 (2004)
Rizvi, S.T., Roman, C.: On direct sums of Baer modules. J. Algebra 321, 682–696 (2009)
Stenström, B.: Rings of quotients, Grundlehren der Math, vol. 217. Springer, Berlin (1975)
Tütüncü, K.D., Tribak, R.: On dual Baer modules. Glasgow Math. J. 52, 261–269 (2010)
Tütüncü, D.K., Smith, P.F., Toksoy, S.E.: On dual Baer modules. Contemp. Math. 609, 173–184 (2014)
von Neumann, J.: On regular rings. Proc. Natl. Acad. Sci. USA 22, 707–712 (1936)
Zelmanowitz, J.: Regular modules. Trans. Am. Math. Soc. 163, 341–355 (1972)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. M. Clementino.
We would like to thank the referee for comments and suggestions, which improved the presentation of the paper. We acknowledge the support of the Grant PN-II-ID-PCE-2012-4-0100.
Rights and permissions
About this article
Cite this article
Crivei, S., Olteanu, G. Rickart and Dual Rickart Objects in Abelian Categories: Transfer via Functors. Appl Categor Struct 26, 681–698 (2018). https://doi.org/10.1007/s10485-017-9509-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-017-9509-8
Keywords
- Abelian category
- (dual) Rickart object
- (dual) Baer object
- Regular object
- Adjoint functors
- Grothendieck category
- (graded) Module
- Comodule
- Endomorphism ring