Abstract
We study the existence of maximal ideals in preadditive categories defining an order \(\preceq \) between objects, in such a way that if there do not exist maximal objects with respect to \(\preceq \), then there is no maximal ideal in the category. In our study, it is sometimes sufficient to restrict our attention to suitable subcategories. We give an example of a category \(\mathbf {C}_F\) of modules over a right noetherian ring R in which there is a unique maximal ideal. The category \(\mathbf {C}_F\) is related to an indecomposable injective module F, and the objects of \(\mathbf {C}_F\) are the R-modules of finite F-rank.
Similar content being viewed by others
References
Adámek, Jirí, Rosický, Jirí: Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)
Anderson, Frank W., Fuller, Kent R.: Rings and categories of modules, Second, Graduate Texts in Mathematics, vol. 13. Springer, New York (1992)
Cartan, Henri, Eilenberg, Samuel: Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, (1999). With an appendix by David A. Buchsbaum, Reprint of the 1956 original
Enochs, Edgar E., Jenda, Overtoun M.G.: Relative homological algebra. Volume 1, extended, De Gruyter Expositions in Mathematics, vol. 30. Walter de Gruyter GmbH & Co. KG, Berlin (2011)
Facchini, A.: Subdirect representations of categories of modules, Rings, modules and representations, pp. 139–151 (2009)
Facchini, A., Perone, M.: On some noteworthy pairs of ideals in \({{\rm Mod}}\)-\(R\). Appl. Categ. Structures 22(1), 147–167 (2014)
Facchini, A., Příhoda, P.: Factor categories and infinite direct sums. Int. Electron. J. Algebra 5, 135–168 (2009)
Facchini, Alberto: Krull-Schmidt fails for serial modules. Trans. Amer. Math. Soc. 348(11), 4561–4575 (1996)
Facchini, Alberto, Perone, Marco: Maximal ideals in preadditive categories and semilocal categories. J. Algebra Appl. 10(1), 1–27 (2011)
Facchini, Alberto, Příhoda, Pavel: Endomorphism rings with finitely many maximal right ideals. Comm. Algebra 39(9), 3317–3338 (2011)
Fu, X.H., Guil Asensio, P.A., Herzog, I., Torrecillas, B.: Ideal approximation theory. Adv. Math. 244, 750–790 (2013)
Herzog, Ivo: The phantom cover of a module. Adv. Math. 215(1), 220–249 (2007)
Lam, T.Y.: Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189. Springer, New York (1999)
St’ovícek, Jan: Deconstructibility and the Hill lemma in Grothendieck categories. Forum Math. 25(1), 193–219 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Walter P. Tholen.
The first author is partially supported by projects MTM2014-54439 and MTM2016-77445-P from MEC and by research group FQM211 from Junta de Andalucía.
The second author is partially supported by Dipartimento di Matematica, Università di Padova (Progetto SID 2016 BIRD163492/16 “Categorical homological methods in the study of algebraic structures” and progetto DOR1690814 “Anelli e categorie di moduli”).
Rights and permissions
About this article
Cite this article
Cortés-Izurdiaga, M., Facchini, A. Maximal Ideals in Module Categories and Applications. Appl Categor Struct 26, 617–629 (2018). https://doi.org/10.1007/s10485-017-9505-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-017-9505-z