[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Maximal Ideals in Module Categories and Applications

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We study the existence of maximal ideals in preadditive categories defining an order \(\preceq \) between objects, in such a way that if there do not exist maximal objects with respect to \(\preceq \), then there is no maximal ideal in the category. In our study, it is sometimes sufficient to restrict our attention to suitable subcategories. We give an example of a category \(\mathbf {C}_F\) of modules over a right noetherian ring R in which there is a unique maximal ideal. The category \(\mathbf {C}_F\) is related to an indecomposable injective module F, and the objects of \(\mathbf {C}_F\) are the R-modules of finite F-rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, Jirí, Rosický, Jirí: Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  2. Anderson, Frank W., Fuller, Kent R.: Rings and categories of modules, Second, Graduate Texts in Mathematics, vol. 13. Springer, New York (1992)

    Book  Google Scholar 

  3. Cartan, Henri, Eilenberg, Samuel: Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, (1999). With an appendix by David A. Buchsbaum, Reprint of the 1956 original

  4. Enochs, Edgar E., Jenda, Overtoun M.G.: Relative homological algebra. Volume 1, extended, De Gruyter Expositions in Mathematics, vol. 30. Walter de Gruyter GmbH & Co. KG, Berlin (2011)

    Book  Google Scholar 

  5. Facchini, A.: Subdirect representations of categories of modules, Rings, modules and representations, pp. 139–151 (2009)

  6. Facchini, A., Perone, M.: On some noteworthy pairs of ideals in \({{\rm Mod}}\)-\(R\). Appl. Categ. Structures 22(1), 147–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Facchini, A., Příhoda, P.: Factor categories and infinite direct sums. Int. Electron. J. Algebra 5, 135–168 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Facchini, Alberto: Krull-Schmidt fails for serial modules. Trans. Amer. Math. Soc. 348(11), 4561–4575 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Facchini, Alberto, Perone, Marco: Maximal ideals in preadditive categories and semilocal categories. J. Algebra Appl. 10(1), 1–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Facchini, Alberto, Příhoda, Pavel: Endomorphism rings with finitely many maximal right ideals. Comm. Algebra 39(9), 3317–3338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, X.H., Guil Asensio, P.A., Herzog, I., Torrecillas, B.: Ideal approximation theory. Adv. Math. 244, 750–790 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Herzog, Ivo: The phantom cover of a module. Adv. Math. 215(1), 220–249 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lam, T.Y.: Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189. Springer, New York (1999)

    Book  Google Scholar 

  14. St’ovícek, Jan: Deconstructibility and the Hill lemma in Grothendieck categories. Forum Math. 25(1), 193–219 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Cortés-Izurdiaga.

Additional information

Communicated by Walter P. Tholen.

The first author is partially supported by projects MTM2014-54439 and MTM2016-77445-P from MEC and by research group FQM211 from Junta de Andalucía.

The second author is partially supported by Dipartimento di Matematica, Università di Padova (Progetto SID 2016 BIRD163492/16 “Categorical homological methods in the study of algebraic structures” and progetto DOR1690814 “Anelli e categorie di moduli”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortés-Izurdiaga, M., Facchini, A. Maximal Ideals in Module Categories and Applications. Appl Categor Struct 26, 617–629 (2018). https://doi.org/10.1007/s10485-017-9505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-017-9505-z

Navigation