Abstract
Given small dg categories A and B and a B-A-bimodule T, we give necessary and sufficient conditions for the associated derived functors of Hom and the tensor product to be fully faithful. Special emphasis is put on the case when RHom\(_\mathrm{A}\)(T,?) is fully faithful and preserves compact objects, in which case nice recollements situations appear. It is also shown that, given an algebraic compactly generated triangulated category D, all compactly generated co-smashing triangulated subcategories which contain the compact objects appear as the image of such a RHom\(_\mathrm{A}\)(T,?). The results are then applied to the case when A and B are ordinary algebras, comparing the situation with the well-stablished tilting theory of modules. In this way we recover and extend recent results by Bazzoni–Mantese–Tonolo, Chen-Xi and D. Yang.
Similar content being viewed by others
References
Anderson, F.K., Fuller, K.R.: Rings and Categories of Modules, vol. 13. Springer, Berlin (1992)
Angeleri-Hügel, L., Coelho, F.U.: Infinitely generated tilting modules of finite projective dimension. Forum Math. 13, 239–250 (2001)
Angeleri-Hügel, L., Herbera, D., Trlifaj, J.: Tilting modules and Gorenstein rings. Forum Math. 18, 211–229 (2006)
Angeleri-Hügel, L., Sánchez, J.: Tilting modules over tame hereditary algebras. Journal für die Reine und Angewandte Mathematik 682, 1–48 (2013)
Angeleri-Hügel, L., Trlifaj, J.: Tilting theory and the finitistic dimension conjecture. Trans. Am. Math. Soc. 354, 4345–4358 (2002)
Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory. London Math. Soc. Student Texts, vol. 65. Cambridge University Press, Cambridge (2005)
Auslander, M., Platzeck, M.I., Reiten, I.: Coxeter functors without diagrams. Trans. Am. Math. Soc. 250, 1–12 (1979)
Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 86(1), 111–152 (1991)
Auslander, M., Reiten, I., Smalø, S.O.: Representation Theory of Artin Algebras. Cambridge St. Adv. Maths, vol. 36. Cambridge University Press, Cambridge (1995)
Bazzoni, S.: Cotilting modules are pure-injective. Proc. Am. Math. Soc. 131, 3665–3672 (2003)
Bazzoni, S., Mantese, F., Tonolo, A.: Derived equivalence induced by \(n\)-tilting modules. Proc. Am. Math. Soc. 139(12), 4225–4234 (2011)
Beilinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100 (1982)
Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 188(883) (2007)
Bernstein, I., Gelfand, I.M., Ponomariev, V.A.: Coxeter functors and Gabriel’s theorem. Usp. Mat. Nauk 28, 19–23 (1973)
Bondal, A.I., Kapranov, M.M.: Representable functors, Serre functors, and reconstructions. Izv. Akad. Nauk SSSR Ser. Math. 53(6) 1183–1205, 1337 (1989)
Bondal, A.I., Van den Bergh, M.: Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J. 3(1), 1–36 (2003)
Borngartz, K.: Tilted Algebras. Springer Lecture Notes in Mathematics, vol. 904, pp. 26–38 (1981)
Brenner, S., Butler, M.C.R.: Generalization of the Bernstein–Gelfand–Ponomarev Reflection Functors. Representation Theory II, Springer Lecture Notes in Mathematics, vol. 832, pp. 103–169 (1980)
Buan, A.B., Krause, H.: Cotilting modules over tame hereditary algebras. Pacif. J. Math. 211(1), 41–59 (2003)
Chen, H., Xi, C.: Good tilting modules and recollements of derived module categories. Proc. Lond. Math. Soc. 104(5), 959–996 (2012)
Chen, H., Xi, C.: Ringel modules and homological subcategories. arXiv:1206.0522v1
Colby, R.R.: A generalization of Morita duality and the tilting theorem. Commun. Algebra 17(7), 1709–1722 (1989)
Colby, R.R., Fuller, K.R.: Tilting, cotilting, and serially tilted rings. Commun. Algebra 18, 1585–1615 (1990)
Colpi, R., Trlifaj, J.: Tilting modules and tilting torsion theories. J. Algebra 178, 614–634 (1995)
Deligne, P.: Cohomologie à supports propres. SGA 4, Exposé XVII, Springer-Verlag. Lecture Notes in Mathematics, vol. 305, pp. 252–480 (1973)
Dixmier, J.: Algèbres Envelopantes. Gauthier-Villars, New York (1974)
Donkin, S.: Tilting modules for algebraic groups and finite dimensional algebras. In: Angeleri-Hügel, L., Happel, D., Krause, H. (eds.) Handbook of Tilting Theory. London Math. Soc. LNS, vol. 332, pp. 215–257. Cambridge University Press, Cambridge (2007)
Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002)
Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)
Gabriel, P., Popescu, N.: Charactérisation des catégories abéliennes avec générateurs et limites inductives exactes. C. R. Acad. Sci. Paris 258, 4188–4190 (1964)
Gabriel, P., Zisman, M.: Calculus of Factions and Homotopy Theory, vol. 35. Springer, Berlin (1967)
Gelfand, S.I., Manin, YuI: Methods of Homological Algebra. Springer Monographs in Mathematics, Berlin (1996)
Geigle, W., Lenzing, H.: A class of weighted projective lines arising in the representation theory of finite dimensional algebras. Springer Lecture Notes in Mathematics 1273, 265–297 (1987)
Geigle, W., Lenzing, H.: Perpendicular categories with applications to representations and sheaves. J. Algebra 144, 273–343 (1991)
Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras. De Gruyter, Berlin (2006)
Happel, D.: On the derived category of a finite dimensional algebra. Comment. Math. Helvetici 62, 339–389 (1987)
Happel, D., Reiten, I., Smalo, S.O.: Piecewise hereditary algebras. Arch Math. 66(3), 182–186 (1996)
Happel, D., Reiten, I., Smalo, S.O.: Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 120(575) (1996)
Happel, D., Ringel, C.M.: Tilted algebras. Trans. Am. Math. Soc. 274, 399–443 (1982)
Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs 99, AMS (2003)
Keller, B.: Deriving DG categories. Ann. Scient. Ec. Norm. Sup. 27(1), 63–102 (1994)
Keller, B.: Chapter of handbook of algebra. In: Hazewinkel, M. (ed.) Derived Categories and Their Uses, vol. 1. Elsevier, New York (1996)
Keller, B.: On Differential Graded Categories. International Congress of Mathematicians, Eur. Math. Soc., Zürich, vol. 2, pp. 151–190 (2006)
Keller, B.: Cluster algebras and cluster categories. Notes from introductory survey lectures given at the IPM. Bull. Iranian Math. Soc. 37(2), part 2, 187–234 (2011)
Keller, B.: Cluster algebras and derived categories. To Appear in the Proceedings of the GCOE Conference Derived categories 2011 Tokyo. http://www.math.jussieu.fr/~keller/publ/index.html
Keller, B., Nicolás, P.: Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not. 5, 1028–1078 (2013)
Krause, H.: A brown representability theorem via coherent functors. Topology 41, 853–861 (2002)
Krause, H., Solberg, O.: Filtering modules of finite projective dimension. Forum Math. 15(3), 631–650 (2003)
Lectures on modules and rings, Springer-Verlag Graduate Texts in Mathematics, vol. 189 (1999)
Lenzing, H.: Hereditary categories. In: Angeleri-Hügel, L., Happel, D., Krause, H. (eds.) Handbook of Tilting Theory. London Math. Soc. LNS 332. Cambridge University Press, Cambridge (2007)
McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Wiley, New York (1987)
Mac Lane, S.: Categories for the Working Mathematician, vol. 5. Springer-Verlag Graduate Texts in Mathematics 5
Meltzer, H.: Exceptional vector bundles, tilting sheaves and tilting complexes for weighted projective lines. Mem. Am. Math. Soc. 171 (2004)
Miyashita, Y.: Tilting modules of finite projective dimension. Math. Zeitschr. 193, 113–146 (1986)
Neeman, A.: Triangulated Categories Annals of Mathematics studies. Princeton University Press, Princeton (2001)
Nicolás, P.: On Torsion Torsionfree Triples. Ph.D. thesis, Universidad de Murcia (2007)
Nicolás, P., Saorín, M.: Parametrizing recollement data for triangulated categories. J. Algebra 322, 1220–1250 (2009)
Nicolás, P., Saorín, M.: Lifting and restricting recollement. Appl. Categor. Struct. 19, 557–596 (2011)
Reiten, I., Van den Bergh, M.: Grothendieck groups and tilting objects. Algebra Represent. Theory 4, 1–23 (2001)
Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. 39, 436–456 (1989)
Ringel, C.M.: Tame algebras and integral quadratic forms. Springer Lecture Notes in Mathematics 1099 (1984)
Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Mathematics, vol. 269
Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras. London Math. Soc. Student Text., vol. 72. Cambridge University Press, Cambridge (2007)
Stenström, B.: Rings of Quotients. Grundlehren der math. Wissensch, vol. 217. Springer, Berlin (1975)
Stovicek, J.: All \(n\)-cotilting modules are pure-injective. Proc. Am. Math. Soc. 134(7), 1891–1897 (2006)
Tabuada, G.: Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C. R. Math. Acad. Sci. Paris 340(1), 15–19 (2005)
Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Astérisque, Société Mathématique de France 239 (1996)
Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge (1994)
Yang, D.: Recollements from generalized tilting. Proc. AMS 140(1), 83–91 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to the memory of Michael Butler and Dieter Happel.
The authors are supported by research projects from the Ministerio de Economía y Competitividad of Spain (MTM2013-46837-P and MTM2016-77445-P) and from the Fundación ’Séneca’ of Murcia (19880/GERM/15), both with a part of FEDER funds.
Rights and permissions
About this article
Cite this article
Nicolás, P., Saorín, M. Generalized Tilting Theory. Appl Categor Struct 26, 309–368 (2018). https://doi.org/10.1007/s10485-017-9495-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-017-9495-x