Abstract
Formal concept analysis associates a lattice of formal concepts to a binary relation. The structure of the relation can then be described in terms of lattice theory. On the other hand Q -analysis associates a simplicial complex to a binary relation and studies its properties using topological methods. This paper investigates which mathematical invariants studied in one approach can be captured in the other. Our main result is that all homotopy invariant properties of the simplicial complex can be recovered from the structure of the concept lattice. This not only clarifies the relationships between two frameworks widely used in symbolic data analysis but also offers an effective new method to establish homotopy equivalence in the context of Q -analysis. As a musical application, we will investigate Olivier Messiaen’s modes of limited transposition. We will use our theoretical result to show that the simplicial complex associated to a maximal mode with m transpositions is homotopy equivalent to the (m−2)–dimensional sphere.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wille, R.: Restructuring lattice theory: An approach based on the hierarchy of concepts. In: Rival, I. (ed.) Ordered sets: proceedings of the NATO Advanced Study Institute held at Banff, Canada, August 28 to September 12, 1981. D. Reidel Pub. Co. (1982)
Barbut, M., Monjardet, B.: Ordre et Classification: Algèbre et Combinatoire. Hachette (1970)
Dowker, C.H.: Homology groups of relations. Ann. Math 2nd Series 56(1), 84–95 (1952)
Atkin, R.H.: From cohomology in physics to q–connectivity in social science. Int. J. Man Mach. Stud. 4(2), 139–167 (1972)
Casti, J.L.: Connectivity, Complexity, and Catastrophe in Large-Scale Systems. Wiley, New York (1979)
Freeman, L.C.: Q-analysis and the structure of friendship networks. Int. J. Man Mach. Stud. 12(4), 367–378 (1980)
Johnson, J.: Transport Planning and Control, Chapter The dynamics of Large Complex Road Systems. Oxford University Press, pp. 165–186 (1991)
Duckstein, L., Nobe, S.A.: q-analysis for modeling and decision making. Eur. J. Oper. Res. 103(3), 411–425 (1997)
Barcelo, H., Kramer, X., Laubenbacher, R., Weaver, C.: Foundations of a connectivity theory for simplicial complexes. Adv. Appl. Math. 26(2), 97–128 (2001)
Kaburlasos, V.G.: Special issue on information engineering applications based on lattices. Inf. Sci. 181(10), 1771–1773 (2011)
Catanzaro, M.J.: Generalized Tonnetze. J. Math. Music 5(2), 117–139 (2011)
Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer–Verlag, Berlin and Heidelberg (1999)
Atkin, R.H.: Q-analysis. A hard language for the soft sciences. Futures, 492–499 (1978)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Munkres, J.R.: Elements of Algebraic Topology. The Benjamin/Cummings Publication Company, Menlo Park (1984)
Bigo, L., Giavitto, J.-L., Spicher, A.: Building topological spaces for musical objects. In: Mathematics and Computation in Music, volume 6726 of LNCS. Springer, Paris (2011)
Rehding, A.: Hugo Riemann and the Birth of Modern Musical Thought. Number 11 in New Perspectives in Music History and Criticism. Cambridge University Press (2003)
Lewin, D.: Generalized musical intervals and transformations. Yale University Press (2007 reedition by Oxford University Press) (1987)
Halsey, G.D., Hewitt, E.: Eine gruppentheoretische Methode in der Musiktheorie. Jahresbericht der Deutschen Mathematiker-Vereinigung 80, 151–207 (1978)
Collins, N.: Enumeration of chord sequences. In: Sound and Music Computing. Aalborg University Copenhangen, Denmark (2012). SMC
Reiner, D.L.: Enumeration in music theory. Am. Math. Mon., 51–54 (1985)
Fripertinger, H., Voitsberg, G.: Enumeration in musical theory. Institut für Elektronische Musik (IEM) (1992)
Fripertinger, H.: Enumeration of mosaics. Discret. Math. 199(1), 49–60 (1999)
Fripertinger, H.: Enumeration and construction in music theory. In: Proceedings of the Diderot Forum on Mathematics and Music (Vienna), pp. 170–203 (1999)
Mazzola, G., Muzzulini, D., Hofmann, G.R.: Geometrie der Töne: Elemente der Mathematischen Musiktheorie. Birkhäuser (1990)
Mazzola, G., et al.: The topos of music. Birkhäuser, Basel (2002)
Tymoczko, D.: The geometry of musical chords. Science 313(5783), 72–74 (2006)
Mazzola, G.: Gruppen und Kategorien in der Musik: Entwurf einer mathematischen Musiktheorie, volume 10 of Reasearch and Exposition in Mathematics. Heldermann (1985)
Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) Mathematics and Computation in Music, volume 7937 of Lecture Notes in Computer Science, pp 38–51. Springer, Berlin Heidelberg (2013)
Nestke, A.: Paradigmatic motivic analysis. In: Perspectives in Mathematical and Computational Music Theory, Osnabrück Series on Music and Computation, pp. 343–365 (2004)
Wille, R.: Musik und Mathematik: Salzburger Musikgespräch 1984 unter Vorsitz von Herbert von Karajan, chapter Musiktheorie und Mathematik, pp. 4–31. Springer (1985)
Noll, T., Brand, M.: Morphology of chords. Perspect. Math. Comput. Music Theory 1, 366 (2004)
Schlemmer, T., Andreatta, M.: Using formal concept analysis to represent chroma systems. In: Mathematics and Computation in Music, pp. 189–200. Springer (2013)
Forte, A.: The Structure of Atonal Music. Yale University Press (1973)
Lewin, D.: Forte’s interval vector, my interval function, and Regener’s common-note function. J. Music Theory, 194–237 (1977)
Bresson, J., Agon, C., Assayag, G.: Openmusic: Visual programming environment for music composition, analysis and research. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 743–746. ACM (2011)
Read, R.C.: Combinatorial problems in the theory of music. Discret. Math. 167, 543–551 (1997)
Broué, M.: Les tonalités musicales vues par un mathématicien. Le temps des savoirs (Revue de l’Institut Universitaire de France), pp. 37–78. Odile Jacob (2001)
Schlemmer, T., Schmidt, S.E.: A formal concept analysis of harmonic forms and interval structures. Ann. Math. Artif. Intell. 59(2), 241–256 (2010)
Borchmann, D., Ganter, B.: Concept lattice orbifolds — first steps. In: Ferré, S., Rudolph, S. (eds.) Formal Concept Analysis: 7th International Conference, ICFCA 2009 Darmstadt, Germany, May 21–24, 2009 Proceedings. Springer Verlag, Berlin and Heidelberg (2009)
Fripertinger, H.: Remarks on rhythmical canons. In: Fripertinger, H., Reich, L. (eds.) Proceedings of the Colloquium on Mathematical Music Theory, volume 347 of Grazer Math. Ber. pp. 73–90. Graz, Austria (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Freund, A., Andreatta, M. & Giavitto, JL. Lattice-based and topological representations of binary relations with an application to music. Ann Math Artif Intell 73, 311–334 (2015). https://doi.org/10.1007/s10472-014-9445-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-014-9445-3
Keywords
- Formal concept analysis
- Q -analysis
- Simplicial complex
- Homotopy invariance
- Betti numbers
- Combinatorial classification of harmonies
- Mode of limited transposition