[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient exploration of unknown indoor environments using a team of mobile robots

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Whenever multiple robots have to solve a common task, they need to coordinate their actions to carry out the task efficiently and to avoid interferences between individual robots. This is especially the case when considering the problem of exploring an unknown environment with a team of mobile robots. To achieve efficient terrain coverage with the sensors of the robots, one first needs to identify unknown areas in the environment. Second, one has to assign target locations to the individual robots so that they gather new and relevant information about the environment with their sensors. This assignment should lead to a distribution of the robots over the environment in a way that they avoid redundant work and do not interfere with each other by, for example, blocking their paths. In this paper, we address the problem of efficiently coordinating a large team of mobile robots. To better distribute the robots over the environment and to avoid redundant work, we take into account the type of place a potential target is located in (e.g., a corridor or a room). This knowledge allows us to improve the distribution of robots over the environment compared to approaches lacking this capability. To autonomously determine the type of a place, we apply a classifier learned using the AdaBoost algorithm. The resulting classifier takes laser range data as input and is able to classify the current location with high accuracy. We additionally use a hidden Markov model to consider the spatial dependencies between nearby locations. Our approach to incorporate the information about the type of places in the assignment process has been implemented and tested in different environments. The experiments illustrate that our system effectively distributes the robots over the environment and allows them to accomplish their mission faster compared to approaches that ignore the place labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Albers, S., Kursawe, K., Schuierer, S.: Exloring unknown environments with obstacles. Algotithmica, 32, 123–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Althaus, P., Christensen, H.I.: Behaviour coordination in structured environments. Adv. Robot. 17(7), 657–674 (2003)

    Article  Google Scholar 

  3. Bender, M., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proc. of the 35th Annual Symposium on Foundations of Computer Science, pp. 75–85, Santa Fe, 20–22 November 1994

  4. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–378 (2005)

    Article  Google Scholar 

  5. Cao, Y.U., Fukunaga, A.S., Khang, A.B.: Cooperative mobile robotics: antecedents and directions. J. Auton. Robots 4(1), 7–27 (1997)

    Article  Google Scholar 

  6. Choset, H.: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Trans. Robot. Autom. 17(2), 125–137 (2001)

    Article  Google Scholar 

  7. Deng, X., Kameda, T., Papadimitriou, C.: How to learn in an unknown environment. In: Proc. of the 32nd Symposium on the Foundations of Computational Science, pp. 298–303. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  8. Deng, X., Papadimitriou, C.: How to learn in an unknown environment: the rectilinear case. J. ACM 45(2), 215–245 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Robotic exploration as graph construction. IEEE Trans. Robot. Autom. 7(6), 859–865 (1991)

    Article  Google Scholar 

  10. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for multi-agent robotics. J. Auton. Robots 3(4), 375–397 (1996)

    Google Scholar 

  11. Edlinger, T., von Puttkamer, E.: Exploration of an indoor-environment by an autonomous mobile robot. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1278–1248, Munich, 12–16 September 1994

  12. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: Collaborative multi-robot localization. In: Proc. of the 23rd German Conference on Artificial Intelligence, pp. 325–340. Springer, New York (1999)

    Google Scholar 

  13. Fox, D., Ko, J., Konolige, K., Stewart, B.: A hierarchical bayesian approach to the revisiting problem in mobile robot map building. In: Proc. of the Int. Symposium of Robotics Research (ISRR), Siena, 19–22 October 2003

  14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gerkey, B.P., Matarić, M.J.: Sold!: auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  16. Goldberg, D., Matarić, M.J.: Interference as a tool for designing and evaluating multi-robot controllers. J. Robot. Auton. Syst. 8, 637–642 (1997)

    Google Scholar 

  17. Gonzalez, R.C., Wintz, P.: Digital Image Processing. Addison-Wesley, Reading (1987)

    Google Scholar 

  18. González-Baños, H.H., Mao, E., Latombe, J.C., Murali, T.M., Efrat, A.: Planning robot motion strategies for efficient model construction. In: Proc. Int. Symp. on Robotics Research (ISRR), pp. 345–352, Snowbird, 2000

  19. Guzzoni, D., Cheyer, A., Julia, L., Konolige, K.: Many robots make short work. AI Mag. 18(1), 55–64 (1997)

    Google Scholar 

  20. Howard, A.: Multi-robot simultaneous localization and mapping using particle filters. In: Robotics: Science and Systems, pp. 201–208, Cambridge, 2005

  21. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-theoretic approach to multi-robot mapping and exploration. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 3232–3238, Las Vegas, 2003

  22. Koenig, S., Simmons, R.: Xavier: a robot navigation architecture based on partially observable markov decision process models. In: Kortenkamp, D., Bonasso, R., Murphy, R. (eds.) Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pp. 91–122. MIT, Cambridge (1998)

    Google Scholar 

  23. Koenig, S., Szymanski, B., Liu, Y.: Efficient and inefficient ant coverage methods. Ann. Math. Artif. Intell. 31, 41–76 (2001)

    Article  Google Scholar 

  24. Koenig, S., Tovey, C., Halliburton, W.: Greedy mapping of terrain. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Seoul, 2001

  25. Kuipers, B., Beeson, P.: Bootstrap learning for place recognition. In: Proc. of the National Conference on Artificial Intelligence (AAAI), Edmonton, 2002

  26. Kuipers, B., Byun, Y.-T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. J. Robot. Auton. Syst. 8, 47–63 (1991)

    Article  Google Scholar 

  27. Kurazume, R., Shigemi, N.: Cooperative positioning with multiple robots. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1250–1257, Munich, 1994

  28. Lee, D., Recce, M.: Quantitative evaluation of the exploration strategies of a mobile robot. Int. J. Rob. Res. 16(4), 413–447 (1997)

    Article  Google Scholar 

  29. Martínez-Mozos, O., Stachniss, C., Burgard, W.: Supervised learning of places from range data using adaboost. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 1742–1747, Barcelona, 2005

  30. Matarić, M.J., Sukhatme, G.: Task-allocation and coordination of multiple robots for planetary exploration. In: Proc. of the Int. Conf. on Advanced Robotics (ICAR), pp. 61–70, Budapest, 2001

  31. Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: Mathematical Morphology and its Applications to Image and Signal Processing, Chapter A. General Algorithm for Computing Distance Transforms in Linear Time, pp. 331–340. Kluwer, Dordrecht (2000)

    Google Scholar 

  32. Oore, S., Hinton, G.E., Dudek, G.: A mobile robot that learns its place. Neural Comput. 9(3), 683–699 (1997)

    Article  Google Scholar 

  33. Rekleitis, I., Dudek, G., Milios, E.: Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In: Proc. of International Joint Conference in Artificial Intelligence (IJCAI), vol. 2, pp. 1340–1345 (1997)

  34. Rekleitis, I., Lee-Shue, V., Peng New, A., Choset, H.: Limited communication, multi-robot team based coverage. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 3462–3468, New Orleans, 2004

  35. Rekleitis, I., Sim, R., Dudek, G., Milios, E.: Collaborative exploration for the construction of visual maps. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Maui, 2001

  36. Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: algorithms, performance bounds and observations. J. Auton. Robots 11(2), 117–136 (2001)

    Article  MATH  Google Scholar 

  37. Sack, D., Burgard, W.: A comparison of methods for line extraction from range data. In: Proc. of the IFAC Symposium on Intelligent Autonomous Vehicles (IAV), Lisbon, 2004

  38. Schneider-Fontan, M., Matarić, M.J.: Territorial multi-robot task division. IEEE Trans. Robot. Autom. 14(5), 815–822 (1998)

    Article  Google Scholar 

  39. Stachniss, C.: Exploration and Mapping with Mobile Robots. PhD thesis, University of Freiburg, Department of Computer Science (2006)

  40. Stachniss, C., Martínez-Mozos, O., Burgard, W.: Speeding-up multi-robot exploration by considering semantic place information. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 1692–1697, Orlando, 2006

  41. Stroupe, A.W., Ravichandran, R., Balch, T.: Value-based action selection for exploration and mapping with robot teams. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 4090–4197, New Orleans, 2004

  42. Torralba, A., Murphy, K., Freeman, W., Rubin, M.: Context-based vision system for place and object recognition. In: Proc. of the Int. Conf. on Computer Vision (ICCV), Nice, 2003

  43. Viola, P., Jones, M.J.: Robust real-time object detection. In: Proc. of IEEE Workshop on Statistical and Theories of Computer Vision, Vancouver, 2001

  44. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proc. of the Second International Conference on Autonomous Agents, pp. 47–53, Minneapolis, 1998

  45. Yamauchi, B., Schultz, A., Adams, W.: Integrating exploration and localization for mobile robots. Adapt. Behav. 7(2), 217–229 (1999)

    Article  Google Scholar 

  46. Zelinsky, A., Jarvis, R., Byrne, J., Yuta, S.: Planning paths of complete coverage of an unstructured environment by a mobile robots. In: Proc. of the Int. Conf. on Advanced Robotics (ICAR), pp. 533–538, Tokyo, 1993

  47. Zlot, R., Stenz, A.T., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Washington, DC, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill Stachniss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stachniss, C., Martínez Mozos, Ó. & Burgard, W. Efficient exploration of unknown indoor environments using a team of mobile robots. Ann Math Artif Intell 52, 205–227 (2008). https://doi.org/10.1007/s10472-009-9123-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-009-9123-z

Keywords

Mathematics Subject Classification (2000)

Navigation