[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A two-stage intervened decision system with multi-state decision units and dynamic system configuration

  • S.I. : Reliability Modeling with Applications Based on Big Data
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper develops the performability and cost–benefit models for a two-stage intervened decision system with majority voting rule and binary input and output. The decision process of the system contains two stages: an inspection stage (stage 1) and a result submission stage (stage 2). During the first stage, each decision unit in the system will have multiple states and a supervisor will come to visit each unit and check its state for at most twice. The supervisor will conduct the first visit to each unit for certain. However, the behavior of the second visit to each unit will be determined by its state during the first visit. In addition, each decision unit may be removed from the system given certain states during each visit. Therefore the structure of system may change during the decision process. The units which are not removed during the first stage can submit the result at any time during the second stage. However, the performance of each remaining unit will be determined by the ending state of the first stage. Moreover, in order to improve the efficiency of the decision process, a check point is added to the second stage. The performability and cost–benefit models for this dynamic system are developed by considering the distribution of states at the end of the first stage. A three-step method will be proposed for model optimization. Some numerical examples for the three-step method will be presented. The proposed intervened decision system in this paper can be applied in many contexts such as financial investment, paper submission review and proposal evaluation, credit evaluation and loan application and product release and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Avizienis, A., Gilley, G. C., Mathur, F. P., Rennels, D. A., Rohr, J. A., & Rubin, D. K. (1971). The STAR (self-testing and repairing) computer: An investigation of the theory and practice of fault-tolerant computer design. IEEE Transactions on Computers, C-20(11), 1312–1321.

    Article  Google Scholar 

  • Bai, Y., Teng, H., & Shen, L. (2009). Enhancement of the reliability of an embedded surveillance system by multiple sensors using a majority voting mechanism. In Instrumentation and measurement technology conference, 2009. I2MTC ‘09. Singapore: IEEE.

  • Blough, D. M., & Sullivan, G. F. (1994). Voting using predispositions. IEEE Transactions on Reliability, 43(4), 604–616.

    Article  Google Scholar 

  • Chen, L., & Avizienis, A. (1995). N-version programming: a fault-tolerance approach to reliability of software operation. In Proceedings of the 25th international symposium on fault-tolerant computing (vol. 113).

  • Gogiashvili, Z., Namicheishvili, O., & Shonia, G. (2000). Optimization of weights for threshold redundancy of binary channels by the method of (Mahalanobis’) generalized distance. In Proceedings of MMR 2000, second international conference on mathematical methods in reliability (pp. 433–436).

  • Latif-Shabgahi, G., & Bennett, S. (1999). Adaptive majority voter: a novel voting algorithm for real-time fault-tolerant control systems. In Proceedings of 25th EUROMICRO conference. Milan: IEEE.

  • Lee, M., Pham, H., & Zhang, X. (1999). A methodology for priority setting with application to software development process. European Journal of Operational Research, 118(2), 375–389.

    Article  Google Scholar 

  • Levitin, G. (2001). Analysis and optimization of weighted voting systems consisting of voting units with limited availability. Reliability Engineering and System Safety, 73(1), 91–100.

    Article  Google Scholar 

  • Levitin, G. (2002a). Asymmetric weighted voting systems. Reliability Engineering and System Safety, 76(2), 205–212.

    Article  Google Scholar 

  • Levitin, G. (2002b). Evaluating correct classification probability for weighted voting classifiers with plurality voting. European Journal of Operational Research, 141(3), 596–607.

    Article  Google Scholar 

  • Levitin, G. (2003). Threshold optimization for weighted voting classifiers. Naval Research Logistics, 50, 322–344.

    Article  Google Scholar 

  • Levitin, G. (2004). Maximizing survivability of vulnerable weighted voting systems. Reliability Engineering and System Safety, 83(1), 17–26.

    Article  Google Scholar 

  • Levitin, G. (2005). Weighted voting systems: Reliability versus rapidity. Reliability Engineering and System Safety, 89(2), 177–184.

    Article  Google Scholar 

  • Levitin, G., & Lisnianski, A. (2001). Reliability optimization for weighted voting system. Reliability Engineering and System Safety, 71(2), 131–138.

    Article  Google Scholar 

  • Lin, T., & Pham, H. (2017). Two-stage weighted intervened decision systems. Life Cycle Reliability and Safety Engineering, 6(1), 69–77.

    Article  Google Scholar 

  • Liu, Q., & Zhang, H. (2017). Weighted voting system with unreliable links. IEEE Transactions on Reliability, 66(2), 339–350.

    Article  Google Scholar 

  • Liu, Q., Zhang, H., & Ma, Y. (2016). Reliability evaluation for wireless sensor network based on weighted voting system with unreliable links. In 3rd international conference on information science and control engineering (ICISCE). Beijing: IEEE.

  • Liu, Y., Lei, H., Zhang, D., & Wu, Z. (2018). Robust optimization for relief logistics planning under uncertainties in demand and transportation time. Applied Mathematical Modelling, 55, 262–280.

    Article  Google Scholar 

  • Long, Q., Xie, M., Ng, S. H., & Levitin, G. (2008). Reliability analysis and optimization of weighted voting systems with continuous states input. European Journal of Operational Research, 191(1), 240–252.

    Article  Google Scholar 

  • Lorczak, P. R. (1989). A theoretical investigation of generalized voters for redundant systems. In 19th international symposium on fault-tolerant computing. Chicago: IEEE.

  • Lyons, R. E., & Vanderkulk, W. (1962). The use of triple-modular redundancy to improve computer reliability. IBM Journal of Research and Development, 6(2), 200–209.

    Article  Google Scholar 

  • Mine, H., & Hatayma, K. (1981). Reliability analysis and optimal redundancy for majority-voted logic circuits. IEEE Transactions on Reliability, 30(2), 189–191.

    Article  Google Scholar 

  • Nordmann, L., & Pham, H. (1997). Reliability of decision making in human-organizations. IEEE Transactions on Systems, Man, and Cybernetic-Part A: Systems and Humans, 27(4), 543–549.

    Article  Google Scholar 

  • Nordmann, L., & Pham, H. (1999). Weighted voting systems. IEEE Transactions on Reliability, 48(1), 42–49.

    Article  Google Scholar 

  • Parhami, B. (1994a). Threshold voting fundamentally simpler than plurality voting. International Journal of Reliability, Quality and Safety Engineering, 1(1), 95–102.

    Article  Google Scholar 

  • Parhami, B. (1994b). Voting algorithms. IEEE Transactions on Reliability, 43(4), 617–629.

    Article  Google Scholar 

  • Pham, H. (1997). Reliability analysis of digital communication systems with imperfect voters. Mathematical and Computer Modelling, 26(4), 103–112.

    Article  Google Scholar 

  • Pham, H. (1999). Reliability analysis for dynamic configurations of systems with three failure modes. Reliability Engineering and System Safety, 63(1), 13–23.

    Article  Google Scholar 

  • Pham, H., & Xie, M. (2002). A generalized surveillance model with applications to systems safety. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 32(4), 485–492.

    Article  Google Scholar 

  • Sah, R. K., & Stiglitz, J. E. (1986). The architecture of economic systems: Hierarchies and polyarchies. American Economic Review, 76(4), 716–727.

    Google Scholar 

  • Soroudi, A., & Amraee, T. (2013). Decision making under uncertainty in energy systems: State of the art. Renewable and Sustainable Energy Reviews, 28, 376–384.

    Article  Google Scholar 

  • von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organisms from unreliable components. In C. Shannon & J. McCarthy (Eds.), Automata studies (Annals of Mathematics Studies) (Vol. 34, pp. 43–98). Princeton: Princeton University Press.

    Google Scholar 

  • Wang, H., Wang, W., & Peng, R. (2017). A two-phase inspection model for a single component system with three-stage degradation. Reliability Engineering and System Safety, 158, 31–40.

    Article  Google Scholar 

  • Willsky, A. S. (1976). A survey of design methods for failure detection in dynamic systems. Automatica, 12(6), 601–611.

    Article  Google Scholar 

  • Xie, M., & Pham, H. (2005). Modeling the reliability of threshold weighted voting systems. Reliability Engineering and System Safety, 87(1), 53–63.

    Article  Google Scholar 

  • Yang, L., Zhao, Y., Peng, R., & Ma, X. (2018). Opportunistic maintenance of production systems subject to random wait time and multiple control limits. Journal of Manufacturing Systems, 47, 12–24.

    Article  Google Scholar 

  • Zhou, J., Huang, N., Sun, X., Xing, L., & Zhang, S. (2015). Network resource reallocation strategy based on an improved capacity-load model. Eksploatacja i Niezawodność, 17(4), 487–495.

    Article  Google Scholar 

  • Zuev, Y. A., & Ivanov, S. K. (1999). The voting as a way to increase the decision reliability. Journal of the Franklin Institute, 336(2), 361–378.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to appreciate the guest editor and anonymous reviewers for their valuable suggestions and thorough review, which have significantly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingnan Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The distribution of states at the end of stage 1 can be calculated following the procedure below:

Scenario 1 \( T_{{I_{1} }} \le \frac{1}{2}t_{0} \), in which major mistakes can be fixed during the first visit.

Define \( P_{H} \triangleq P\left( {T_{{I_{1} }} \le \frac{1}{2}t_{0} } \right) = H_{1} \left( {\frac{1}{2}t_{0} } \right) = \mathop \int \limits_{0}^{{\frac{1}{2}t_{0} }} h_{1} \left( {y_{1} } \right)dy_{1} \).

Given that \( T_{{I_{1} }} = y_{1} \in \left( {0,\frac{1}{2}t_{0} } \right] \),

$$ \begin{aligned} S_{{0|y_{1} ,H}} & \triangleq P\left( {X\left( {T_{{I_{1} }} } \right) = 0 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} } \right) = e^{{ - \mathop \int \limits_{0}^{{y_{1} }} \lambda \left( t \right)dt}} \\ S_{{i|y_{1} ,H}} & \triangleq P\left( {X\left( {T_{{I_{1} }} } \right) = i |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} } \right) \\ & = \alpha_{i} \left( {1 - e^{{ - \mathop \int \limits_{0}^{{y_{1} }} \lambda \left( t \right)dt}} } \right)\quad \left( {i = 1, 2, 3} \right). \\ \end{aligned} $$

(1-1) If \( X\left( {T_{{I_{1} }} } \right) = 3 \), the agent has made critical mistakes and it will be removed from the system for sure. In this way,

$$ \begin{aligned} P_{{34|y_{1} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 3} \right) = 1 \\ P_{{3k|y_{1} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 3} \right) = 0 \quad \left( {k = 1, 2, 3} \right). \\ \end{aligned} $$

(1-2) If \( X\left( {T_{{I_{1} }} } \right) = 2 \), major mistakes are found during the first visit and the supervisor will come for the second visit for sure after the problems are fixed.

Given that \( T_{{I_{2} }} = y_{2} \in \left( {y_{1} ,t_{0} } \right) \),

$$ \begin{aligned} S_{{20|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {T_{{I_{2} }} } \right) = 0 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 2,T_{{I_{2} }} = y_{2} } \right) = e^{{ - \mathop \int \limits_{{y_{1} }}^{{y_{2} }} \lambda_{2} \left( t \right)dt}} \\ S_{{2j|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {T_{{I_{2} }} } \right) = j |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 2,T_{{I_{2} }} = y_{2} } \right) \\ & = \alpha_{j} \left( {1 - e^{{ - \mathop \int \limits_{{y_{1} }}^{{y_{2} }} \lambda_{2} \left( t \right)dt}} } \right) \quad\left( {j = 1, 2, 3} \right). \\ \end{aligned} $$

If the result of the second visit is 0, the state at \( t_{0} \) can be 0, 1, 2 or 3:

$$ \begin{aligned} P_{{200|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = 0 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,} \right. \\ & \quad \left. {X\left( {T_{{I_{1} }} } \right) = 2,T_{{I_{2} }} = y_{2} ,X\left( {T_{{I_{2} }} } \right) = 0} \right) = e^{{ - \mathop \int \limits_{{y_{2} }}^{{t_{0} }} \lambda_{20} \left( t \right)dt}} \\ P_{{20k|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 2,T_{{I_{2} }} = y_{2} ,} \right. \\ & \quad \left. {X\left( {T_{{I_{2} }} } \right) = 0} \right) = \alpha_{k} \left( {1 - e^{{ - \mathop \int \limits_{{y_{2} }}^{{t_{0} }} \lambda_{20} \left( t \right)dt}} } \right)\quad \left( {k = 1, 2, 3} \right). \\ \end{aligned} $$

If the result of the second visit is not 0, the agent will be removed from the system:

$$ \begin{aligned} P_{{2j4|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 2,} \right. \\ & \quad \left. {T_{{I_{2} }} = y_{2} ,X\left( {T_{{I_{2} }} } \right) = j} \right) = 1 \quad \left( {j = 1, 2, 3} \right). \\ \end{aligned} $$

Un-condition on the result of the second visit:

$$ \begin{aligned} P_{{2k|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,} \right. \\ & \quad \left. {X\left( {T_{{I_{1} }} } \right) = 2,T_{{I_{2} }} = y_{2} } \right) = P_{{20k|y_{1} y_{2} ,H}} S_{{20|y_{1} y_{2} ,H}} \left( {k = 0, 1, 2, 3} \right) \\ P_{{24|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,} \right. \\ & \quad \left. {X\left( {T_{{I_{1} }} } \right) = 2,T_{{I_{2} }} = y_{2} } \right) = \mathop \sum \limits_{j = 1}^{3} S_{{2j|y_{1} y_{2} ,H}} = 1 - e^{{ - \mathop \int \limits_{{y_{1} }}^{{y_{2} }} \lambda_{2} \left( t \right)dt}} . \\ \end{aligned} $$

Un-condition on the time of the second visit:

$$ \begin{aligned} P_{{2k|y_{1} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 2} \right) \\ & = \mathop \int \limits_{{y_{1} }}^{{t_{0} }} P_{{2k|y_{1} y_{2} ,H}} h_{2} \left( {y_{2} } \right)dy_{2}\quad \left( {k = 0, 1, 2, 3, 4} \right). \\ \end{aligned} $$

(1-3) If \( X\left( {T_{{I_{1} }} } \right) = 1 \), minor mistakes are found during the first visit and the supervisor will come for the second visit for sure.

Given that \( T_{{I_{2} }} = y_{2} \in \left( {y_{1} ,t_{0} } \right) \),

$$ \begin{aligned} S_{{10|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {T_{{I_{2} }} } \right) = 0 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 1,T_{{I_{2} }} = y_{2} } \right) = e^{{ - \mathop \int \limits_{{y_{1} }}^{{y_{2} }} \lambda_{1} \left( t \right)dt}} \\ S_{{1j|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {T_{{I_{2} }} } \right) = j |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,} \right. \\ & \quad \left. {X\left( {T_{{I_{1} }} } \right) = 1,T_{{I_{2} }} = y_{2} } \right) = \alpha_{j} \left( {1 - e^{{ - \mathop \int \limits_{{y_{1} }}^{{y_{2} }} \lambda_{1} \left( t \right)dt}} } \right)\quad \left( {j = 1, 2, 3} \right). \\ \end{aligned} $$

If the result of the second visit is 0 or 1, the state at \( t_{0} \) can be 0, 1, 2 or 3:

$$ \begin{aligned} P_{{1j0|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = 0 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 1,} \right. \\ & \quad \left. {T_{{I_{2} }} = y_{2} ,X\left( {T_{{I_{2} }} } \right) = j} \right) = e^{{ - \mathop \int \limits_{{y_{2} }}^{{t_{0} }} \lambda_{1j} \left( t \right)dt}} \left( {j = 0, 1} \right) \\ P_{{1jk|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 1,T_{{I_{2} }} = y_{2} ,X\left( {T_{{I_{2} }} } \right) = j} \right) \\ & = \alpha_{k} \left( {1 - e^{{ - \mathop \int \limits_{{y_{2} }}^{{t_{0} }} \lambda_{1j} \left( t \right)dt}} } \right)\quad \left( {j = 0, 1;\,\,k = 0, 1, 2, 3} \right). \\ \end{aligned} $$

If the result of the second visit is 2 or 3, the agent will be removed from the system:

$$ \begin{aligned} P_{{1j4|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,} \right. \\ & \quad \left. {X\left( {T_{{I_{1} }} } \right) = 1,T_{{I_{2} }} = y_{2} ,X\left( {T_{{I_{2} }} } \right) = j} \right) = 1\quad \left( {j = 2, 3} \right). \\ \end{aligned} $$

Un-condition on the result of the second visit:

$$ \begin{aligned} P_{{1k|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 1,T_{{I_{2} }} = y_{2} } \right) \\ & = P_{{10k|y_{1} y_{2} ,H}} S_{{10|y_{1} y_{2} ,H}} + P_{{11k|y_{1} y_{2} ,H}} S_{{11|y_{1} y_{2} ,H}} \left( {k = 0, 1, 2, 3} \right) \\ P_{{14|y_{1} y_{2} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 1,T_{{I_{2} }} = y_{2} } \right) \\ & = S_{{12|y_{1} y_{2} ,H}} + S_{{13|y_{1} y_{2} ,H}} \\ \end{aligned} $$

Un-condition on the time of the second visit:

$$ \begin{aligned} P_{{1k|y_{1} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 1} \right) \\ & = \mathop \int \limits_{{y_{1} }}^{{t_{0} }} P_{{1k|y_{1} y_{2} ,H}} h_{2} \left( {y_{2} } \right)dy_{2} \quad \left( {k = 0, 1, 2, 3, 4} \right). \\ \end{aligned} $$

(1-4) If \( X\left( {T_{{I_{1} }} } \right) = 0 \), no mistake is found during the first visit and the supervisor will come to visit this agent again with probability \( q \).

(1-4-1) The supervisor comes to visit the agent for the second time.

Given that \( T_{{I_{2} }} = y_{2} \in \left( {y_{1} ,t_{0} } \right) \),

$$ \begin{aligned} S_{{00|y_{1} y_{2} ,H,q}} & \triangleq P\left( {X\left( {T_{{I_{2} }} } \right) = 0 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,} \right. \\ & \quad \left. {X\left( {T_{{I_{1} }} } \right) = 0,y_{1} < T_{{I_{2} }} < t_{0} ,T_{{I_{2} }} = y_{2} } \right) = e^{{ - \mathop \int \limits_{{y_{1} }}^{{y_{2} }} \lambda_{0} \left( t \right)dt}} \\ S_{{0j|y_{1} y_{2} ,H,q}} & \triangleq P\left( {X\left( {T_{{I_{2} }} } \right) = j |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,y_{1} < T_{{I_{2} }} < t_{0} ,T_{{I_{2} }} = y_{2} } \right) \\ & = \alpha_{j} \left( {1 - e^{{ - \mathop \int \limits_{{y_{1} }}^{{y_{2} }} \lambda_{0} \left( t \right)dt}} } \right)\quad \left( {j = 1, 2, 3} \right). \\ \end{aligned} $$

If the result of the second visit is 0 or 1, the state at \( t_{0} \) can be 0, 1, 2, 3:

$$ \begin{aligned} P_{{0j0|y_{1} y_{2} ,H,q}} & \triangleq P\left( {X\left( {t_{0} } \right) = 0 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,} \right. \\ & \quad \left. {y_{1} < T_{{I_{2} }} < t_{0} ,T_{{I_{2} }} = y_{2} ,X\left( {T_{{I_{2} }} } \right) = j} \right) = e^{{ - \mathop \int \limits_{{y_{2} }}^{{t_{0} }} \lambda_{0j} \left( t \right)dt}} \left( {j = 0, 1} \right) \\ P_{{0jk|y_{1} y_{2} ,H,q}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,} \right. \\ & \quad \left. {y_{1} < T_{{I_{2} }} < t_{0} ,T_{{I_{2} }} = y_{2} ,X\left( {T_{{I_{2} }} } \right) = j} \right) \\ & = \alpha_{k} \left( {1 - e^{{ - \mathop \int \limits_{{y_{2} }}^{{t_{0} }} \lambda_{0j} \left( t \right)dt}} } \right)\quad \left( {j = 0, 1;\,\,k = 1, 2, 3} \right). \\ \end{aligned} $$

If the result of the second visit is 2 or 3, the agent will be removed from the system:

$$ \begin{aligned} P_{{0j4|y_{1} y_{2} ,H,q}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,} \right. \\ & \quad \left. {y_{1} < T_{{I_{2} }} < t_{0} ,T_{{I_{2} }} = y_{2} ,X\left( {T_{{I_{2} }} } \right) = j} \right) = 1\,\, \left( {j = 2, 3} \right). \\ \end{aligned} $$

Un-condition on the result of the second visit:

$$ \begin{aligned} P_{{0k|y_{1} y_{2} ,H,q}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,y_{1} < T_{{I_{2} }} < t_{0} ,T_{{I_{2} }} = y_{2} } \right) \\ & = P_{{00k|y_{1} y_{2} ,H,q}} S_{{00|y_{1} y_{2} ,H,q}} + P_{{01k|y_{1} y_{2} ,H,q}} S_{{01|y_{1} y_{2} ,H,q}}\,\, \left( {k = 0, 1, 2, 3} \right) \\ P_{{04|y_{1} y_{2} ,H,q}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,y_{1} < T_{{I_{2} }} < t_{0} ,T_{{I_{2} }} = y_{2} } \right) \\ & = S_{{02|y_{1} y_{2} ,H,q}} + S_{{03|y_{1} y_{2} ,H,q}} \\ \end{aligned} $$

Un-condition on the time of the second visit:

$$ \begin{aligned} P_{{0k|y_{1} ,H,q}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,y_{1} < T_{{I_{2} }} < t_{0} } \right) \\ & = \mathop \int \limits_{{y_{1} }}^{{t_{0} }} P_{{0k|y_{1} y_{2} ,H,q}} h_{2} \left( {y_{2} } \right)dy_{2} \quad\left( {k = 0, 1, 2, 3, 4} \right). \\ \end{aligned} $$

(1-4-2) There is no second visit.

This case can be represented as \( T_{{I_{2} }} > t_{0} \) and this agent will remain in system for sure:

$$ \begin{aligned} P_{{00|y_{1} ,H,1 - q}} & \triangleq P\left( {X\left( {t_{0} } \right) = 0 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,T_{{I_{2} }} > t_{0} } \right) = e^{{ - \mathop \int \limits_{{y_{1} }}^{{t_{0} }} \lambda_{0} \left( t \right)dt}} \\ P_{{0k|y_{1} ,H,1 - q}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,T_{{I_{2} }} > t_{0} } \right) \\ & = \alpha_{k} \left( {1 - e^{{ - \mathop \int \limits_{{y_{1} }}^{{t_{0} }} \lambda_{0} \left( t \right)dt}} } \right)\,\,\left( {k = 1, 2, 3} \right) \\ P_{{04|y_{1} ,H,1 - q}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0,T_{{I_{2} }} > t_{0} } \right) = 0. \\ \end{aligned} $$

Un-condition on the existence of the second visit by combining (1-4-1) and (1-4-2).

$$ \begin{aligned} P_{{0k|y_{1} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 0} \right) \\ & = qP_{{0k|y_{1} ,H,q}} + \left( {1 - q} \right)P_{{0k|y_{1} ,H,1 - q}} \quad\left( {k = 0, 1, 2, 3, 4} \right). \\ \end{aligned} $$

Combine situations (1-1)–(1-4) and un-condition on the result of the first visit:

$$ \begin{aligned} P_{{k|y_{1} ,H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} } \right) \\ & = \mathop \sum \limits_{i = 0}^{3} (P_{{ik|y_{1} ,H}} S_{{i|y_{1} ,H}} )\quad \left( {k = 0, 1, 2, 3, 4} \right). \\ \end{aligned} $$

Un-condition on the time for the first visit:

$$ \begin{aligned} P_{k|H} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} \le \frac{1}{2}t_{0} } \right) \\ & = \frac{1}{{H_{1} \left( {\frac{1}{2}t_{0} } \right)}}\mathop \int \limits_{0}^{{\frac{1}{2}t_{0} }} P_{{k|y_{1} ,H}} h_{1} \left( {y_{1} } \right)dy_{1} \quad\left( {k = 0, 1, 2, 3, 4} \right). \\ \end{aligned} $$

Scenario 2 \( T_{{I_{1} }} > \frac{1}{2}t_{0} \), in which major mistakes cannot be fixed during the first visit.

Define \( P_{1 - H} \triangleq P\left( {T_{{I_{1} }} > \frac{1}{2}t_{0} } \right) = 1 - H_{1} \left( {\frac{1}{2}t_{0} } \right) = \mathop \int \limits_{{\frac{1}{2}t_{0} }}^{{t_{0} }} h_{1} \left( {y_{1} } \right)dy_{1} \).

Given that \( T_{{I_{1} }} = y_{1} \in \left( {\frac{1}{2}t_{0} ,t_{0} } \right) \),

$$ \begin{aligned} S_{{i|y_{1} ,1 - H}} & \triangleq P\left( {X\left( {T_{{I_{1} }} } \right) = i |T_{{I_{1} }} > \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} } \right) \\ & = S_{{i|y_{1} ,H}} \quad\left( {i = 0, 1, 2, 3} \right). \\ \end{aligned} $$

Given \( X\left( {T_{{I_{1} }} } \right) = 0, 1, 3 \), the calculation results are the same with case (1-4), (1-3) and (1-1) respectively, that is,

$$ \begin{aligned} P_{{ik|y_{1} ,1 - H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} > \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = i} \right) \\ & = P_{{ik|y_{1} ,H}} \quad\left( {i = 0, 1, 3;\,\,k = 0, 1, 2, 3, 4} \right). \\ \end{aligned} $$

If \( X\left( {T_{{I_{1} }} } \right) = 2 \), major mistakes are detected during the first visit and the agent will be removed from the system, which is different from case (1-2) in Scenario 1. In this way,

$$ \begin{aligned} P_{{24|y_{1} ,1 - H}} & \triangleq P\left( {X\left( {t_{0} } \right) = 4 |T_{{I_{1} }} > \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 2} \right) = 1 \\ P_{{2k|y_{1} ,1 - H}} & \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} > \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} ,X\left( {T_{{I_{1} }} } \right) = 2} \right) = 0\quad \left( {k = 0, 1, 2, 3} \right). \\ \end{aligned} $$

Un-condition on the result of the first visit:

$$ P_{{k|y_{1} ,1 - H}} \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} > \frac{1}{2}t_{0} ,T_{{I_{1} }} = y_{1} } \right) = \mathop \sum \limits_{i = 0}^{3} (P_{{ik|y_{1} ,1 - H}} S_{{i|y_{1} ,1 - H}} )\quad\left( {k = 0, 1, 2, 3, 4} \right). $$

Un-condition on the time for the first visit:

$$ P_{k|1 - H} \triangleq P\left( {X\left( {t_{0} } \right) = k |T_{{I_{1} }} > \frac{1}{2}t_{0} } \right) = \frac{1}{{1 - H_{1} \left( {\frac{1}{2}t_{0} } \right)}}\mathop \int \limits_{{\frac{1}{2}t_{0} }}^{{t_{0} }} P_{{k|y_{1} ,1 - H}} h_{1} \left( {y_{1} } \right)dy_{1}\quad \left( {k = 0, 1, 2, 3, 4} \right). $$

Finally, combining the results of the two scenarios above, the distribution of states for each agent can be expressed as:

$$ P_{k} \left( {t_{0} } \right) = P\left( {X\left( {t_{0} } \right) = k} \right) = P_{H} P_{k|H} + P_{1 - H} P_{k|1 - H} \quad \left( {k = 0, 1, 2, 3, 4} \right). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Pham, H. A two-stage intervened decision system with multi-state decision units and dynamic system configuration. Ann Oper Res 311, 255–277 (2022). https://doi.org/10.1007/s10479-019-03334-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03334-8

Keywords

Navigation