[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria

  • Original-Comparative Computational Study
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We study an extended set of Mean-Gini portfolio optimization models that encompasses a general version of the mean-risk formulation, the Minimal Gini model (MinG) that minimizes Gini’s Mean Differences, and the new risk-adjusted Mean-Gini Ratio (MGR) model. We analyze the properties of the various models, prove that a performance measure based on a Risk Adjusted version of the Mean Gini Ratio (RAMGR) is coherent, and establish the equivalence between maximizing this performance measure and solving for the maximal Mean-Gini ratio. We propose a linearization approach for the fractional programming formulation of the MGR model. We also conduct a thorough evaluation of the various Mean-Gini models based on four data sets that represent combinations of bullish and bearish scenarios in the in-sample and out-of-sample phases. The performance is (i) analyzed with respect to eight return, risk, and risk-adjusted criteria, (ii) benchmarked with the S&P500 index, and (iii) compared with their Mean-Variance counterparts for varying risk aversion levels and with the Minimal CVaR and Minimal Semi-Deviation models. For the data sets used in our study, our results suggest that the various Mean-Gini models almost always result in solutions that outperform the S&P500 benchmark index with respect to the out-of-sample cumulative return. Further, particular instances of Mean-Gini models result in solutions that are as good or better (for example, MinG in bullish in-sample scenarios, and MGR in bearish out-of-sample scenarios) than the solutions obtained with their counterparts in Mean-Variance, Minimal CVaR and Minimal Semi-Deviation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. FORS is an abbreviation for the initials of the surnames of the authors of the paper—Fabozzi, Ortobelli, Rachev, and Shalit [see note #3 in Ortobelli et al. (2009)].

References

  • Aragon, G. O., & Ferson, W. E. (2006). Portfolio performance evaluation. Foundations and Trends in Finance, 2(2), 83–190.

    Article  Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measure of risk. Mathematical Finance, 9(3), 203–228.

    Article  Google Scholar 

  • Basel Committee on Banking Supervision (2004). In International convergence of capital measurement and capital standards: A revised framework. Basel: BIS.

  • Bey, R., & Howe, K. (1984). Gini’s mean difference and portfolio selection: An empirical evaluation. Journal of Financial and Quantitative Analysis, 3, 329–338.

    Article  Google Scholar 

  • Biglova, A., Ortobelli, S., Rachev, S. T., & Stoyanov, S. V. (2004). Different approaches to risk estimation in portfolio theory. The Journal of Portfolio Management, 31(1), 103–112.

    Article  Google Scholar 

  • Bonami, P., & Lejeune, M. A. (2009). An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Operations Research, 57(3), 650–670.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research logistics quarterly, 9(3–4), 181–186.

    Article  Google Scholar 

  • Cheung, C. S., Kwan, C. C., & Miu, P. C. (2007). Mean-Gini portfolio analysis: A pedagogic illustration. Spreadsheets in Education, 2(2), 194–207.

    Google Scholar 

  • DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798–812.

    Article  Google Scholar 

  • Dentcheva, D., & Ruszczyński, A. (2003). Optimization with stochastic dominance constraints. SIAM Journal on Optimziation, 14, 548–566.

    Article  Google Scholar 

  • Dentcheva, D., & Ruszczyński, A. (2006). Portfolio optimization with stochastic dominance constraints. Journal of Banking and Finance, 30(2), 433–451.

    Article  Google Scholar 

  • Disatnik, D. J., & Benninga, S. (2007). Shrinking the covariance matrix. The Journal of Portfolio Management, 33(4), 55–63.

    Article  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1–26.

  • Elton, E. J., Gruber, M. J., & Blake, C. R. (1996). Survivor bias and mutual fund performance. Review of Financial Studies, 9(4), 1097–1120.

    Article  Google Scholar 

  • Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust portfolio optimization and management. Hoboken, NJ: Wiley.

    Google Scholar 

  • Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176, 191–220.

    Article  Google Scholar 

  • Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34–105.

    Article  Google Scholar 

  • Farinelli, S., Rossello, D., & Tibiletti, L. (2006). Computational asset allocation using one-sided and two-sided variability measures. In Computational Science–ICCS 2006, Springer, pp. 324–331.

  • Farinelli, S., Ferreira, M., Rossello, D., Thoeny, M., & Tibiletti, L. (2008). Beyond sharpe ratio: Optimal asset allocation using different performance ratios. Journal of Banking & Finance, 32(10), 2057–2063.

    Article  Google Scholar 

  • Filomena, T. P., & Lejeune, M. A. (2012). Stochastic portfolio optimization with proportional transaction costs: Convex reformulations and computational experiments. Operations Research Letters, 40(1), 203–228.

    Google Scholar 

  • Filomena, T. P., & Lejeune, M. A. (2014). Warm-start heuristic for stochastic portfolio optimization with fixed and proportional transaction costs. Journal of Optimization Theory and Applications, 161(1), 308–329.

    Article  Google Scholar 

  • Fishburn, P. C. (1964). Decision and value theory. New York: Wiley.

    Google Scholar 

  • Fisher, L., & Lorie, J. H. (1970). Some studies of variability of returns on investments in common stocks. Journal of Business, 43, 99–135.

    Article  Google Scholar 

  • Gaivoronski, A. A., & Pflug, G. (2004). Value-at-Risk in portfolio optimization: Properties and computational approach. The Journal of Risk, 7, 1–31.

    Article  Google Scholar 

  • Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. Review of Economic, 36, 335–346.

    Google Scholar 

  • Israelsen, C. L. (2005). A refinement to the Sharpe ratio and information ratio. Journal of Asset Management, 5(6), 423–427.

    Article  Google Scholar 

  • Konno, H., & Yamazaki, H. (1991). Mean absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science, 37, 519–531.

    Article  Google Scholar 

  • Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The Annals of Statistics, 17(3), 1217–1241.

  • Lahiri, S. N. (2003). Resampling methods for dependent data. New York: Springer.

    Book  Google Scholar 

  • Mansini, R., Ogryczak, W., & Speranza, M. G. (2003). On LP solvable models for portfolio selection. Informatica, 14(1), 37–62.

    Google Scholar 

  • Mansini, R., Ogryczak, W., & Speranza, M.G. (2007). Tail Gini’s risk measures and related linear programming models for portfolio optimization. In HERCMA Conference Proceedings, CD, LEA Publishers, Athens.

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Markowitz, H. M., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the critical line algorithm. Annals of Operations Research, 45, 307–317.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (1999). From stochastic dominance to mean-risk models: Semi-deviations as risk measures. European Journal of Operational Research, 116, 33–50.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2001). On consistency of stochastic dominance and mean-semideviations models. Mathematical Programming, 89, 217–232.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization, 13, 60–78.

    Article  Google Scholar 

  • Okunev, J. (1988). A comparative study of Gini’s mean difference and mean variance in portfolio analysis. Accounting and Finance, 28, 1–15.

    Article  Google Scholar 

  • Okunev, J. (1991). The generation of Mean Gini efficient sets. Journal of Business and Accounting, 18(2), 209–218.

    Article  Google Scholar 

  • Ortobelli, S., Rachev, S. T., Shalit, H., & Fabozzi, F. J. (2008). Orderings and risk probability functionals in portfolio theory. Probability and Mathematical Statistics, 28, 203–234.

    Google Scholar 

  • Ortobelli, S., Rachev, S. T., Shalit, H., & Fabozzi, F. J. (2009). Orderings and probability functionals consistent with preferences. Applied Mathematical Finance, 16(1), 81–102.

    Article  Google Scholar 

  • Ortobelli, S., Shalit, H., & Fabozzi, F. J. (2013). Portfolio selection problems consistent with given preference orderings. International Journal of Theoretical and Applied Finance, 16(5), 1350,029.

    Article  Google Scholar 

  • Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303–1313.

    Article  Google Scholar 

  • Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32, 122–136.

    Article  Google Scholar 

  • Rachev, S. T., Ortobelli, S., Stoyanov, S. V., Fabozzi, F. J., & Biglova, A. (2008). Desirable properties of an ideal risk measure in portfolio theory. International Journal of Theoretical and Applied Finance, 11(01), 19–54.

    Article  Google Scholar 

  • Ringuest, J. L., Graves, S. B., & Case, R. H. (2004). Mean-Gini analysis in R&D portfolio selection. European Journal of Operational Research, 154, 157–169.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. The Journal of Risk, 2, 21–41.

    Article  Google Scholar 

  • Sanfilippo, G. (2003). Stocks, bonds and the investment horizon: A test of time diversification on the French market. Quantitative Finance, 3(4), 345–351.

    Article  Google Scholar 

  • Shalit, H., & Greenberg, D. (2013). Hedging with stock index options: A Mean-Extended Gini approach. Journal of Mathematical Finance, 3, 119–129.

    Article  Google Scholar 

  • Shalit, H., & Yitzhaki, S. (1984). Mean-Gini, portfolio theory, and the pricing of risky assets. Journal of Finance, 39, 1449–1468.

    Article  Google Scholar 

  • Shalit, H., & Yitzhaki, S. (2005). The Mean-Gini efficient portfolio frontier. The Journal of Financial Research, 18, 59–95.

    Article  Google Scholar 

  • Stoyanov, S. V., Rachev, S. T., & Fabozzi, F. J. (2007). Optimal financial portfolios. Applied Mathematical Finance, 14(5), 401–436.

    Article  Google Scholar 

  • Tasche, D. (2004). Allocating portfolio economic capital to sub-portfolios (pp. 275–302). Economic Capital: A Practitioner’s Guide, Risk Books.

  • Urbán, A., & Ormos, M. (2012). Performance analysis of equally weighted portfolios: USA and Hungary. Acta Polytechnica Hungarica, 9(2), 155–168.

    Google Scholar 

  • Yitzhaki, S. (1982). Stochastic dominance, mean variance and Gini’s mean difference. American Economic Review, 72, 178–185.

    Google Scholar 

  • Yitzhaki, S. (1983). On an extension of the Gini inequality index. International Economic Review, 24, 617–628.

    Article  Google Scholar 

  • Yitzhaki, S., & Schechtman, E. (2013). The Gini methodology: A primer on a statistical methodology. New York: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Ji.

Appendix

Appendix

1.1 Model comparisons

See Tables 3, 4, 5, 6, 7, 8 and 9.

Table 3 Performance of \(\mathbf{MV}_{\lambda }\) models as a function of risk aversion \(\lambda \)—part I
Table 4 Performance of \(\mathbf{MV}_{\lambda }\) models as a function of risk aversion \(\lambda \)—part II
Table 5 Performance of \(\mathbf{MG}_{\lambda }\) models as a function of risk aversion \(\lambda \)—part I
Table 6 Performance of \(\mathbf{MG}_{\lambda }\) models as a function of risk aversion \(\lambda \)—part II
Table 7 Statistical results of cumulative returns differences
Table 8 MinCVaR and MinSD models
Table 9 Results for normality tests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, R., Lejeune, M.A. & Prasad, S.Y. Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria. Ann Oper Res 248, 305–343 (2017). https://doi.org/10.1007/s10479-016-2230-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2230-4

Keywords

Navigation