[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem

  • Big Data Analytics in Operations & Supply Chain Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Manufacturing industries have become larger, diverse and the factors affecting a facility layout design have grown rapidly. Handling and evaluating these large set of criteria (factors) is difficult in designing and solving facility layout problems. These factors and uncertainties have a large impact on manufacturing time, manufacturing cost, product quality and delivery performance. In order to operate efficiently, these facilities should adapt to these variations over multiple time periods and this must be addressed while designing an optimal layout. This paper proposes a novel integrated framework by combining Big Data Analtics and Hybrid meta-heuristic approach to design an optimal facility layout under stochastic demand over multiple periods. Firstly, factors affecting a facility layout design are identified. The survey is conducted to generate data reflecting 3V’s of Big Data. Secondly, a reduced set of factors are obtained using Big Data Analytics. These reduced set of factors are considered to mathematically model a weighted aggregate objective for Multi-objective Stochastic Dynamic Facility Layout Problem (MO-SDFLP). Hybrid Meta-heuristic based on Firefly (FA) and Chaotic simulated annealing is used to solve the MO-SDFLP. To show the working methodology of proposed integrated framework an exemplary case is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiello, G., & Enea, M. (2001). Fuzzy aproach to the robust facility layout in uncertain production environments. International Journal of Production Research, 39(18), 4089–4101.

    Article  Google Scholar 

  • Benjaafar, S., & Sheikhzadeh, S. (2000). Design of flexible plant layouts. IIE Transactions, 32, 309–322.

    Google Scholar 

  • Beyer, M. A., & Laney, D. (2012). The importance of big data: A definition. Gartner. http://www.gartner.com/DisplayDocumnet?ref=ClientFreindlyUrl&id=2057415.

  • Braglia, M., Zanoni, S., & Zavanella, L. (2003). Layout design in dynamic environments: Strategies and quantitative indices. International Journal of Production Research, 41(5), 995–1016.

    Article  Google Scholar 

  • Braglia, M., Zanoni, S., & Zavanella, L. (2005). Layout design in dynamic environments: Analytical issues. International Transition in Operation Research, 12(2005), 1–19.

    Google Scholar 

  • Cheng, R., Gen, M., & Tozawa, T. (1996). Genetic search for facility layout design under interflows uncertainty. Proceedings of IEEE Conference on Evolutionary Computation, 1, 400–405.

    Google Scholar 

  • Chen, C. W., & Sha, D. Y. (2010). A literature review and analysis to the facility layout problem. Journal of the Chinese Institute of Industrial Engineers, 18(1), 55–73.

    Article  Google Scholar 

  • Deb, K., & Saxena, D. (2005). On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology, Kanpur: Technical Report.

  • Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., & Papadopoulos, T. (2016). The impact of big data on world class sustainable manufacturing. International Journal of Advanced Manufacturing Technology, 84(1), 631–645.

    Article  Google Scholar 

  • Dutta, K. N., & Sahu, S. (1982). A multigoal heuristic for facilities design problem: Mughal. International Journal of Production Research, 20, 147–154.

    Article  Google Scholar 

  • Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analtics. National Science Review, 1(2), 293–314.

    Article  Google Scholar 

  • Fortenberry, J. C., & Cox, J. F. (1985). Multiple criteria approach to the facilities layout problem. International Journal of Production Research, 23, 773–782.

    Article  Google Scholar 

  • Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144.

    Article  Google Scholar 

  • Gupta, R. M. (1986). Flexibility in layouts: A simulation approach. Material Flow, 3, 243–250.

    Google Scholar 

  • Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and Big Data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal Production Economic, 154, 72–80.

    Article  Google Scholar 

  • Jacobs, A. (2009). The pathologies of Big Data. Communications of the ACM, 52(8), 36–44.

    Article  Google Scholar 

  • Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics: An overview of the current state-of-the-art. European Journal of Operational Research, 137, 1–9.

    Article  Google Scholar 

  • Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of Big Data analytics. International Journal of Information Management, 34(3), 387–394.

    Article  Google Scholar 

  • Khare, V. K., Khare, M. K., & Neema, M. L. (1988). Combined computer-aided approach for the facilies design problem and estimation of the distribution parameter in the case of multigoal optimization. Computers Industrial Engineering, 14, 465–476.

    Article  Google Scholar 

  • Koopmans, T. C. S., & Beckman, M. (1957). Assignment problem and the location of economic activities. Econometric, 25, 53–76.

    Article  Google Scholar 

  • Krishnan, K. K., Cheraghi, S. H., & Chandan, N. N. (2008). Facility layout design for multiple production scenarios in a dynamic environment. International Journal of Industrial and Systems Engineering, 3(2), 105–133.

    Article  Google Scholar 

  • Kusiak, A., & Heragu, S. S. (1987). The facility layout problem. European Journal of Operational Research, 29, 229–251.

    Article  Google Scholar 

  • Kouvelis, P., & Kiran, A. S. (1990). The plant layout problem in automated manufacturing systems. Annals of Operations Research, 26, 397–412.

    Google Scholar 

  • Kouvelis, P., & Kiran, A. S. (1991). Single and multiple period layout models for automated manufacturing systems. European Journal of Operational Research, 52, 300–314.

    Article  Google Scholar 

  • Kulturel-Konak, S., Smith, A. E., & Norman, B. A. (2004). Layout optimization considering production uncertainty and routing flexibility. International Journal of Production Research, 42(21), 4475–4493.

    Article  Google Scholar 

  • Matai, R., Singh, S. P., & Mittal, M. L. (2013a). A new heuristic for solving facility layout problem. International Journal of Advance Operations Management, 5(2), 137–158.

    Article  Google Scholar 

  • Matai, R., Singh, S. P., & Mittal, M. L. (2013b). A Non-Greedy systematic neighbourhood search heuristic for solving facility layout problem. International Journal of Advanced Manufacturing Technology, 68, 1665–1675.

    Article  Google Scholar 

  • Matai, R., Singh, S. P., & Mittal, M. L. (2013c). Modified simulated annealing based approach for multi objective facility layout problem. International Journal of Production Research, 51(14), 4273–4288.

    Article  Google Scholar 

  • McGahan, A. (2013). Unlocking the big promise of big data. Totman Management, 6(1), 53–57.

    Google Scholar 

  • Meller, R. D., & Gau, K. Y. (1996). The facility layout problem: Recent and emerging trends and perspectives. Journal of Manufacturing Systems, 15, 351–366.

    Article  Google Scholar 

  • Mingjun, J., & Huanwen, T. (2004). Application of chaos in simulated annealing. Chaos, Solutions and Fractals, 21, 933–941.

    Article  Google Scholar 

  • Moslemipour, G., & Lee, T. S. (2011). Intelligent design of a dynamic machine layout in uncertain environment of flexible manufacturing systems. Journal of Intelligent Manufacturing, 23(5), 1849–1860.

    Article  Google Scholar 

  • Norman, B. A., & Smith, A. E. (2000). Considering production uncertainty in block layout design. Working Paper, Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA.

  • Palekar, U. S., Batta, R., Bosch, R. M., & Elhence, S. (1992). Modeling uncertainties in plant layout problems. European Journal of Operational Research, 63, 347–359.

    Article  Google Scholar 

  • Papadopoulos, T., Gunasekaran, A., Dubey, R., Childe, S. J., Altay, N., & Wamba, S.F. (2016). The role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production. doi:10.1016/j.jclepro.2016.03.059.

    Article  Google Scholar 

  • Rosenblatt, M. J. (1979). The facilities layout problem: A multigoal approach’. International Journal of Production Research, 17, 323–332.

    Article  Google Scholar 

  • Rosenblatt, M. J., & Lee, H. (1987). A robustness approach to facilities design. International Journal of Production Research, 25(4), 479–486.

    Article  Google Scholar 

  • Rosenblatt, M. J., & Kropp, D. H. (1992). The single period stochastic plan layout problem. IIE Transactions, 24(2), 169–176.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Singh, S. P., & Sharma, R. R. K. (2006). A review of different approaches to the facility layout problem. The International Journal of Advanced Manufacturing Technology, 30(5–6), 425–433.

    Article  Google Scholar 

  • Singh, S. P., & Sharma, R. R. K. (2008). Two level simulated annealing based approach to solve facility layout problem. International Journal of Production Research, 46(13), 3563–3582.

    Article  Google Scholar 

  • Singh, S. P., & Singh, V. K. (2010). An improved heuristic approach for multi-objective facility layout problem. The International Journal of Production Research, 48(4), 1171–1194.

    Article  Google Scholar 

  • Singh, S. P., & Sharma, R. R. K. (2010). A hybrid genetic search based approach to solve single period facility layout problem. Asia Pacific Management Review, 15(2), 301–312.

    Google Scholar 

  • Shore, R. H., & Tompkins, J. A. (1980). Flexible facilities design. AIIE Transactions, 12(2), 200–205.

    Google Scholar 

  • Sun, E. W., Chen, Y. T., & Yu, M. T. (2015). Generalized optimal wavelet decomposing algorithm for big financial data. International Journal of Production Economics, 165, 194–214.

    Article  Google Scholar 

  • Tayal, A., & Singh, S. P. (2014). Chaotic simulated annealing for solving stochastic dynamic facility layout problem. Journal of International Management Studies, 14(2), 67–74.

    Article  Google Scholar 

  • Tayal, A., & Singh, S. P. (2015). Integrated SA-DEA-TOPSIS based solution approach for Multi Objective Stochastic Dynamic Facility Layout Problem. International Journal of Business and Systems Research (accepted).

  • Tayal, A., & Singh, S. P. (2016a). Analysis of Simulated Annealing Cooling Schemas for Design of Optimal Flexible Layout under Uncertain Dynamic Product Demand. International Journal of Operation Research (accepted).

  • Tayal, A., & Singh, S. P. (2016b). Flexible Layout Design For Uncertain Product Demand by Integrating Firefly and Chaotic Simulated Annealing Approach. Global Journal of Flexible Systems Management (accepted).

  • Tayal, A., & Singh, S. P. (2016c). Analyzing the effect of chaos functions in solving stochastic dynamic facility layout problem using CSA. Springer Book Chapter (accepted).

  • Tompkins, J. A., White, J. A., & Tanchoco, J. M. A. (2003). Facilities Planning. New York: Willey.

    Google Scholar 

  • Urban, T. L. (1987). A multiple criteria model for the facilities layout problem. International Journal of Production Research, 25(12), 1805–1812.

    Google Scholar 

  • Urban, T. L. (1989). Combining qualitative and quantitative analysis in facility layout. Production and Inventory Management, 30, 73–77.

    Google Scholar 

  • Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How Big Data can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246.

    Article  Google Scholar 

  • Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2016). Big data analytics in logistic sand supply chain management: Certain investigations FDOR research and applications. International Journal of Production Economics, 176, 98–110.

    Article  Google Scholar 

  • Yang, T., & Peters, B. A. (1998). Flexible machine layout design for dynamic and uncertain production environments. European Journal of Operational Research, 108, 49–64.

    Article  Google Scholar 

  • Yang, X. S. (2009). Firefly algorithms for multimodal optimization: Foundations and applications. Stochastic algorithms. Berlin: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Prakash Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayal, A., Singh, S.P. Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem. Ann Oper Res 270, 489–514 (2018). https://doi.org/10.1007/s10479-016-2237-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2237-x

Keywords

Navigation