[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming

  • S.I. : CLAIO 2014
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we discuss the index tracking strategy using mathematical programming. First, we use a non-linear programming formulation for the index tracking problem, considering a limited number of assets. Since the problem is difficult to be solved in reasonable time by commercial mathematical packages, we apply a hybrid solution approach, combining mathematical programming and genetic algorithm. We show the efficiency of the proposed approach comparing the results with optimal solutions, with previous developed methods, and from real-world market indexes. The computational experiments focus on Ibovespa (the most important Brazilian market index), but we also present results for consolidated markets such as S&P 100 (USA), FTSE 100 (UK) and DAX (Germany). The proposed framework shows its ability to obtain very good results (gaps from the optimal solution smaller than 5 % in 8 min of CPU time) even for a highly volatile index from a developing country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Newspaper: Valor Economico, August 2013: http://www.valor.com.br/financas/3235752/ogx-e-acao-que-mais-ganha-peso-na-nova-carteira-do-ibovespa.

  2. https://www.dropbox.com/s/ws1t6gorp4cvwkx/idx_tracking.zip?dl=0.

References

  • Aldridge, I. (2009). High-frequency trading: A practical guide to algorithmic strategies and trading systems (Vol. 459). Hoboken: Wiley.

    Google Scholar 

  • Alexander, C., & Dimitriu, A. (2005). Indexing and statistical arbitrage: Tracking error or cointegration? The Journal of Portfolio Management, 31(2), 50–63.

    Article  Google Scholar 

  • Angelelli, E., Mansini, R., & Speranza, M. G. (2012). Kernel search: A new heuristic framework for portfolio selection. Computational Optimization and Applications, 51(1), 345–361.

    Article  Google Scholar 

  • Barro, D., & Canestrelli, E. (2009). Tracking error: A multistage portfolio model. Annals of Operations Research, 165(1), 47–66.

    Article  Google Scholar 

  • Beasley, J. E., Meade, N., & Chang, T. J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621–643.

    Article  Google Scholar 

  • Borenstein, D. (1998). Towards a practical method to validate decision support systems. Decision Support Systems, 23(3), 227–239.

    Article  Google Scholar 

  • Canakgoz, N. A., & Beasley, J. E. (2009). Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research, 196, 384–399.

    Article  Google Scholar 

  • Coleman, T. F., Li, Y., & Henniger, J. (2006). Minimizing tracking error while restricting the number of assets. Journal of Risk, 8(4), 33–56.

    Article  Google Scholar 

  • Consiglio, A., & Zenios, S. A. (2001). Integrated simulation and optimization models for tracking international fixed income indices. Mathematical Programming, 89, 311–339.

    Article  Google Scholar 

  • Derigs, U., & Nickel, N. H. (2004). On a local-search heuristic for a class of tracking error minimization problems in portfolio management. Annals of Operations Research, 131(1–4), 45–77.

    Article  Google Scholar 

  • Dunis, C. L., & Ho, R. (2005). Cointegration portfolios of european equities for index tracking and market neutral strategies. Journal of Asset Management, 6(1), 33–52.

    Article  Google Scholar 

  • Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25, 383–417.

    Article  Google Scholar 

  • Fama, E., & French, K. (2010). Luck versus skill in the cross-section of mutual fund returns. The Journal of Finance, 65(5), 1915–1947.

    Article  Google Scholar 

  • Filomena, T. P., & Lejeune, M. A. (2012). Stochastic portfolio optimization with proportional transaction costs: Convex reformulations and computational experiments. Operations Research Letters, 40, 212–217.

    Article  Google Scholar 

  • Filomena, T. P., & Lejeune, M. A. (2014). Warm-start heuristic for stochastic portfolio optimization with fixed and proportional transaction costs. Journal of Optimization Theory and Applications, 161, 308–329.

    Article  Google Scholar 

  • Frino, A., & Gallagher, D. R. (2001). Tracking s&p 500 index funds. The Journal of Portfolio Management, 28, 44–55.

    Article  Google Scholar 

  • Gaivoronski, A. A., Krylov, S., & van der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking. European Journal of Operational Research, 163, 115–131.

    Article  Google Scholar 

  • Gencay, R., Dacorogna, M., Muller, U. A., Pictet, O., & Olsen, R. (2001). An introduction to high-frequency finance. New York: Academic Press.

    Google Scholar 

  • Gilli, M., & Schumann, E. (2012). Heuristic optimisation in financial modelling. Annals of Operations Research, 193(1), 129–158.

    Article  Google Scholar 

  • Guastaroba, G., & Speranza, M. G. (2012). Kernel search: An application to the index tracking problem. European Journal of Operational Research, 217, 54–68.

    Article  Google Scholar 

  • Jansen, R., & van Dijk, R. (2002). Optimal benchmark tracking with small portfolios. The Journal of Portfolio Management, 28(2), 33–39.

    Article  Google Scholar 

  • Jeurissen, R., & van den Berg, J. (2008). Optimized index tracking using a hybrid genetic algorithm. In IEEE congress on evolutionary computation, 2008 (CEC 2008, IEEE world congress on computational intelligence) (pp. 2327–2334).

  • Konno, H., & Wijayanayake, A. (2001). Minimal cost index tracking under nonlinear transactions costs and minimal transactions unit constraints. International Journal of Theoretical and Applied Finance, 4, 939–958.

  • Krink, T., Mittnik, S., & Paterlini, S. (2009). Differential evolution and combinatorial search for constrained index-tracking. Annals of Operations Research, 172(1), 153–176.

    Article  Google Scholar 

  • Maringer, D., & Oyewumi, O. (2007). Index tracking with constrained portfolios. Intelligent Systems in Accounting, Finance and Management, 15, 57–71.

    Article  Google Scholar 

  • Murray, W., & Shek, H. (2012). A local relaxation method for the cardinality constrained portfolio optimization problem. Computational Optimization and Applications, 53(3), 681–709.

    Article  Google Scholar 

  • Oh, K. J., Kim, T. Y., & Min, S. (2005). Using genetic algorithm to support portfolio optimization for index fund management. Expert Systems with Applications, 28, 371–379.

    Article  Google Scholar 

  • Ruiz-Torrubiano, R., & Suárez, A. (2009). A hybrid optimization approach to index tracking. Annals of Operations Research, 166(1), 57–71.

    Article  Google Scholar 

  • Sant’Anna, L. R., Filomena, T. P., & Borenstein, D. (2014). Index tracking with control on the number of assets. Brazilian Review of Finance (in Portuguese), 12(1), 89–119.

    Google Scholar 

  • Scozzari, A., Tardella, F., Paterlini, S., & Krink, T. (2013). Exact and heuristic approaches for the index tracking problem with UCITS constraints. Annals of Operations Research, 205, 235–250.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the two anonymous referees and the associate editor for their valuable comments and suggestions that greatly improved the quality of the paper. This research was funded by the following Brazilian Research Agencies: CAPES, CNPq, and FAPERGS; and Senescyt, Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Riegel Sant’Anna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sant’Anna, L.R., Filomena, T.P., Guedes, P.C. et al. Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming. Ann Oper Res 258, 849–867 (2017). https://doi.org/10.1007/s10479-016-2111-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2111-x

Keywords

Navigation