[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Two-part tariff contracting with competing unreliable suppliers in a supply chain under asymmetric information

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We employ a two-stage game to study a two-part tariff contracting under asymmetric information in a supply chain, which consists of two unreliable suppliers and one retailer. The suppliers compete to sell their products, which are partial substitute, through a common retailer, who faces a stochastic demand and has superior information about the market. In the first stage, the suppliers simultaneously and independently announce the two-part tariff contract. The retailer, who is close to customers, decides whether to accept the two-part tariff contract. In the second stage, the uncertainty in market information, the supply information and the demand information are resolved. Then, the retailer determines the demand rates of products to optimize his profit. In this paper, we first derive the retailer’s optimal strategy and fully characterize the supplier’s optimal contract design. Subsequently, we study the impact of the degree of substitution on the equilibrium. We find that a higher degree of substitution implies a lower purchasing price but a higher fixed fee. We also evaluate the impact of supply uncertainty on the equilibriums. Finally, we conduct numerical experiments to show that the information rent is increasing with the degree of substitution. However, a larger intensity of competition is disadvantageous to the supplier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.businessweek.com/news/2011-10-24/colombia-coffee-crop-may-miss-forecasts-after-bad-weather.html.

References

  • Cachon, G. (2003). Supply chain coordination with contracts. In S. Graves & T. de Kok (Eds.), The handbook of operations research and management science: Supply chain management. The Netherlands: Elsevier.

    Google Scholar 

  • Cachon, G., & Lariviere, M. (2001). Contracting to assure supply: How to share demand forecasts in a supply chain. Management Science, 47(5), 629–646.

    Article  Google Scholar 

  • Cachon, G., & Lariviere, M. (2005). Supply chain coordination with revenue sharing contracts: Strengths and limitations. Management Science, 51(1), 30–44.

    Article  Google Scholar 

  • Che, Y.-K. (1993). Design competition through multidimensional auctions. The RAND Journal of Economics, 24(4), 668–680.

    Article  Google Scholar 

  • Chen, F. (2003). Information sharing and supply chain coordination. In A. G. de Kok & S. C. Graves (Eds.), Handbook in operations research and management science (Vol. 11, pp. 341–421). Amsterdam: Elsevier.

    Google Scholar 

  • Chiu, C. H., Choi, T. M., & Tang, C. S. (2011). Price, rebate, and returns supply contracts for coordinating supply chains with price dependent demand. Production and Operations Management, 20, 81–91.

    Article  Google Scholar 

  • Cho, S. H., & Tang, C. S. (2013). Advance selling in a supply chain under uncertain supply and demand. Manufacturing & Service Operations Management, 15(2), 305–319.

    Article  Google Scholar 

  • Choi, T. M., Chow, P. S., & Xiao, T. (2012). Electronic price-testing scheme for fashion retailing with information updating. International Journal of Production Economics, 140, 396–406.

    Article  Google Scholar 

  • Choi, T. M. (2013). Multi-period risk minimization purchasing models for fashion products with interest rate, budget, and profit target considerations. Annals of Operations Research. doi:10.1007/s10479-013-1453-x.

  • Choi, T. M. (2014). Fashion retail supply chain management: A systems optimization approach. Boca Raton: CRC Press.

    Google Scholar 

  • Chow, P. S., Choi, T. M., Shen, B., & Zheng, J. (2014). Supply contracting with risk-sensitive retailers under information asymmetry: An exploratory behavioral study. Systems Research and Behavioral Science, 31(4), 554–564.

    Article  Google Scholar 

  • Corbett, C., Zhou, D., & Tang, C. (2004). Contract type and information asymmetry. Management Science, 50, 550–559.

    Article  Google Scholar 

  • Corbett, C., & de Groote, X. (2000). A supplier’s optimal quantity discount policy under asymmetric information. Management Science, 46, 444–450.

    Article  Google Scholar 

  • Fu, Q., Lee, C. Y., & Teo, C. P. (2010). Procurement risk management using options: Random spot price and the portfolio effect. IIE Transactions, 42(11), 793–811.

    Article  Google Scholar 

  • Fudenberg, D., & Tirole, J. (1991). Game theory. Cambridge, MA: MIT Press.

    Google Scholar 

  • Guler, M., & Bilgic, T. (2009). On coordinating an assembly system under random yield and random demand. European Journal of Operational Research, 196(1), 342–350.

    Article  Google Scholar 

  • Gupta, D., & Cooper, W. L. (2005). Stochastic comparisons in production yield management. Operations Research, 53(2), 377–384.

    Article  Google Scholar 

  • Ha, A. (2001). Supplier-buyer contracting: Asymmetric cost information and the cut-off level policy for buyer participation. Naval Research Logistics, 48(1), 41–64.

    Article  Google Scholar 

  • Ha, A., & Tong, S. (2008). Contracting and information sharing under supply chain competition. Management Science, 54(4), 701–715.

    Article  Google Scholar 

  • Hernig, M., & Gerchak, Y. (1990). The structure of periodic review policies in the presence of variable yield. Operations Research, 38, 634–643.

    Article  Google Scholar 

  • Hu, X. X., Gurnani, H., & Wang, L. (2012). Managing risk of supply disruptions: Incentives for capacity restoration. Production and Operations Management. doi:10.1111/j.1937-5956.2012.01342.x.

  • Jeuland, A., & Shugan, S. (1983). Managing channel profits. Marketing Science, 2, 239–272.

    Article  Google Scholar 

  • Keren, B. (2009). The single-period inventory problem: Extension to random yield from the perspective of the supply chain. Omega, 37(4), 801–810.

    Article  Google Scholar 

  • Laffont, J.-J., & Martimort, D. (2002). The theory of incentives. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lee, C. Y., & Yang, R. (2013). Supply chain contracting with competing suppliers under asymmetric information. IIE Transactions, 45(1), 25–52.

    Article  Google Scholar 

  • Li, H., Ritchken, P., & Wang, Y. (2008). Option and forward contracting with asymmetric information: Valuation issues in supply chains. European Jounal of Operations Research, 197, 134–148.

    Article  Google Scholar 

  • Li, Q., & Zheng, S. (2006). Joint inventory replenishment and pricing control for systems with uncertain yield and demand. Operations Research, 54(4), 696–705.

    Article  Google Scholar 

  • Li, Q. Q., & Liu, Z. Y. (2015). Supply chain coordination via a two-part tariff contract with price and sales effort dependent demand. Decision Sciences Letters, 4, 27–34.

    Article  Google Scholar 

  • Li, X., Li, Y. J., & Cai, X. Q. (2012). A note on the random yield from the perspective of the supply chain. Omega, 40(5), 503–680.

    Article  Google Scholar 

  • Lim, W. S. (2001). Producer–supplier contracts with incomplete information. Management Science, 47(5), 709–715.

    Article  Google Scholar 

  • Liu, S. X., So, K. C., & Zhang, F. Q. (2010). Effect of supply reliability in a retail setting with joint marketing and inventory decision. Manufacturing & Service Operations Management, 12(1), 19–32.

    Article  Google Scholar 

  • Martinez-de-Albeniz, V., & Simchi-Levi, D. (2003). Competition in the supply option market. Operations Research Center, MIT: Cambridge, MA.

  • Moorthy, K. S. (1987). Managing channel profits. Marketing Science, 6(4), 375–379.

    Article  Google Scholar 

  • Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research, 6(1), 58–73.

    Article  Google Scholar 

  • Ozer, O., & Wei, W. (2006). Strategic commitments for an optimal capacity decisions under asymmetric information. Manamgent Scicence, 52(8), 1238–1257.

    Google Scholar 

  • Shen, B., Choi, T. M., Wang, Y., & Lo, C. K. Y. (2013). The coordination of fashion supply chains with a risk averse supplier by the markdown money policy. IEEE Transactions on Systems, Man, and Cybernetics Systems, 43, 266–276.

    Article  Google Scholar 

  • Schlereth, C., Stepanchuk, T., & Skiera, B. (2010). Optimization and analysis of the profitability of tariff structures with two-part tariffs. European Journal of Operational Research, 206, 691–701.

    Article  Google Scholar 

  • Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488.

    Article  Google Scholar 

  • Tang, Y., & Kouvelis, P. (2011). Supplier diversification strategies in the presence of yield uncertainty and buyer competition. Manufacturing & Service Operations Management, 13(4), 439–451.

    Article  Google Scholar 

  • Wu, D. J., & Kleindorfer, P. R. (2005). Competitive options, supply contracting and electronic markets. Management Science, 51(3), 452–466.

    Article  Google Scholar 

  • Xiao, T., Choi, T. M., & Cheng, T. C. E. (2014). Product variety and channel structure strategy for a retailer Stackelberg supply chain. European Journal of Operational Research, 233, 114–124.

    Article  Google Scholar 

  • Xu, M., & Lu, Y. (2013). The effect of supply uncertainty in price-setting newsvendor models. European Journal of Operational Research, 227, 423–433.

    Article  Google Scholar 

  • Yano, C., & Lee, H. L. (1995). Lot sizing with random yields: A review. Operations Research, 43, 311–334.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the guest editor and two anonymous referees for their helpful comments, which lead to a better exposition of this paper. This research was partially supported by the National Natural Science Foundation of China with Nos. 71390333, 71001073, 71271182, 71471118, by the Humanities and Social Sciences Foundation of Ministry of Education of China with No. 14YJC630096, by Distinguished University Young Scholar Program of Guangdong Province with No. Yq2013140, and by the Science and Technology Promotion Program of Guangdong Province with No. 2013B040403005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Ma.

Appendix

Appendix

Proof of Lemma 1

Given the two-part tariff contract bundles \((B_{i\tau }, B_{j\eta })\), first of all, we substitute the payment function (2) into the retailer’s optimization problem (3). And then we claim that the retailer’s objective function \(\pi _{\theta }(B_{i\tau }, B_{j\eta })\) is jointly concave in the pair of demand rates \(q_\theta =(q_{i\theta },q_{j\theta })\).

Since

$$\begin{aligned} \frac{\partial \pi _{\theta }(B_{i\tau },B_{j\eta }) }{\partial q_{i\theta }}= & {} E(\epsilon _i)A_{i\theta }-2E(\epsilon _i)^{2}q_{i\theta }-2\gamma E(\epsilon _i\epsilon _j) q_{j\theta }-E(\epsilon _i)w_{i\tau }\\= & {} \mu _i A_{i\theta }-2(\mu ^{2}_{i}+\sigma ^{2}_{i})q_{i\theta }-2\gamma \mu _i\mu _j q_{j\theta }-\mu _iw_{i\tau }, \end{aligned}$$

and

$$\begin{aligned}&\frac{\partial ^{2}\pi _{\theta }(B_{i\tau },B_{j\eta }) }{\partial q^{2}_{i\theta }}=-2E(\epsilon _i)^{2}=-2(\mu ^{2}_{i}+\sigma ^{2}_{i}) <0;\\&\frac{\partial ^{2}\pi _{\theta }(B_{i\tau },B_{j\eta }) }{\partial q^{2}_{j\theta }}=-2E(\epsilon _j)^{2}=-2(\mu ^{2}_{j}+\sigma ^{2}_{j}) <0;\\&\frac{\partial ^{2}\pi _{\theta }(B_{i\tau },B_{j\eta }) }{\partial q_{i\theta }\partial q_{j\theta }}=-2\gamma E(\epsilon _i\epsilon _j)=-2\gamma \mu _i\mu _j. \end{aligned}$$

As \(4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}>0\), \(\pi _{\theta }(B_{i\tau },B_{j\eta })\) is jointly concave in \((q_{i\theta }, q_{j\theta })\).

In this situation, the optimal solution is unique and can be derived by the first order condition:

$$\begin{aligned} \left\{ \begin{array}{ll} \mu _i A_{i\theta }-2(\mu ^{2}_{i}+\sigma ^{2}_{i})q_{i\theta }-2\gamma \mu _i\mu _j q_{j\theta }-\mu _iw_{i\tau }=0; \\ \mu _jA_{j\theta }-2(\mu ^{2}_{j}+\sigma ^{2}_{j})q^{*}_{j\theta }-2\gamma \mu _i\mu _jq^{*}_{i\theta }-\mu _jw_{j\eta }=0. \end{array} \right. \end{aligned}$$

Finally, we get \( q^{*}_{i\theta }(w_{i\tau },w_{j\eta })=\frac{\mu _i(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{i\theta }-w_{i\tau })-\gamma \mu _i\mu ^{2}_j(A_{j\theta }-w_{j\eta })}{2(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-2\gamma ^{2}(\mu _i\mu _j)^{2}}.\) \(\square \)

Proof of Lemma 2

The proof of Lemma 2 follows from the proof of Lemma 3. \(\square \)

Proof of Theorem 1

The proof of Theorem 1 follows directly from the proof of Theorem 2. \(\square \)

Proof of Lemma 3

By substituting the payment function \(s_{i\theta }\), supplier i’s profit and retailer’s profit from supplier i into Problem (4), we can simplify the contract design problem as follows

$$\begin{aligned} \Pi _i= & {} \max _{(T_{iH},w_{iH}),(T_{iL},w_{iL})}\{\rho [T_{iH}+(w_{iH}\mu _i-c_i)q^{*}_{iH}(w_{iH}, w_{jH})]\\&\qquad \qquad +(1-\rho )[T_{iL}+(w_{iL}\mu _i-c_i)q^{*}_{iL}( w_{iL}, w_{jL})]\}\\&s.t.\left\{ \begin{array}{ll} \frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iL})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iL}-w_{iL})(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}-T_{iL}\ge 0,&{}\quad (5) \\ \frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}- w_{iH})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iH}-w_{iH})(A_{jH}-w_{jH})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}-T_{iH}\ge 0,&{}\quad (6) \\ \frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iL})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iL}-w_{iL})(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}-T_{iL}\\ ~~~~\ge \frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iH})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iL}-w_{iH})(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}-T_{iH},&{}\quad (7)\\ \frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}- w_{iH})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iH}-w_{iH})(A_{jH}-w_{jH})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}-T_{iH}\\ ~~~~\ge \frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}- w_{iL})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iH}-w_{iL})(A_{jH}-w_{jH})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}-T_{iL}.&{}\quad (8) \end{array} \right. \end{aligned}$$

Under the condition \(0\le [A_{jH}-w_{jH}-(A_{jL}-w_{jL})]\le \frac{(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}-A_{iL})}{\gamma \mu _j^2}\), we claim that the first and the last constraints are binding.

First of all, we show that if the first and the last constraints hold, then the second constraint hold automatically. Notice that from the first constraint, we have:

$$\begin{aligned} -T_{iL}\ge -\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iL})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iL}-w_{iL})(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}. \end{aligned}$$
(9)

Replace (9) into the last constraint, we get:

$$\begin{aligned}&\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}- w_{iH})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iH}-w_{iH})(A_{jH}-w_{jH})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}-T_{iH}\\&\quad \ge \frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}- w_{iL})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iH}-w_{iL})(A_{jH}-w_{jH})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\qquad -\,\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iL})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iL}-w_{iL})(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\quad =(A_{iH}- w_{iL})\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}- w_{iL})-\gamma (\mu _i\mu _j)^{2}(A_{jH}-w_{jH})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\qquad -\,(A_{iL}- w_{iL})\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iL})-\gamma (\mu _i\mu _j)^{2}(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\quad \ge (A_{iL}- w_{iL})\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}- w_{iL})-\gamma (\mu _i\mu _j)^{2}(A_{jH}-w_{jH})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\qquad -\,(A_{iL}- w_{iL})\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iL})-\gamma (\mu _i\mu _j)^{2}(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\quad =(A_{iL}- w_{iL})\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}- A_{iL})-\gamma (\mu _i\mu _j)^{2}(A_{jH}-w_{jH}-A_{jL}+w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\quad \ge 0. \end{aligned}$$

Secondly, we claim that the first constraint is binding. If the first constraint is not tight, we can increase \(T_{iL}\) and \(T_{iH}\) by the same amount \(\varepsilon \) such that all the constraints still hold and the objective function will increase, which violates the optimality condition.

Then, we claim that the last constraint is also binding. If at the optimal solution, the last constraint is not binding, then we can increase \(T_{iH}\) by \(\varepsilon \) such that the last constraint is binding. In this case, all other constraints will hold and the objective function will increase, which violates the optimality condition.

Now we show as long as \( w_{iL}> w_{iH}\), constraint (7) holds automatically. Since the first and the last constraints are binding, we get

$$\begin{aligned} \left\{ \begin{array}{ll} T_{L}=\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iL})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iL}-w_{iL})(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}},\\ T_{H}=T_{L}+\frac{(w_{iL}-w_{iH})[\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(2A_{iH}-w_{iH}-w_{iL})-\gamma (\mu _i\mu _j)^{2}(A_{jH}-w_{jH})]}{4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}. \end{array} \right. \end{aligned}$$

Substituting \(T_{iL}\) and \(T_{iH}\) into the third constraint, we get:

$$\begin{aligned}&\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iL})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iL}-w_{iL})(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}-T_{iL}\\&\qquad -\,\frac{\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iL}- w_{iH})^{2}-\gamma (\mu _i\mu _j)^{2}(A_{iL}-w_{iH})(A_{jL}-w_{jL})}{ 4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}+T_{iH}\\&\quad =\frac{(w_{iH}-w_{iL})[\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(2A_{iL}-w_{iH}-w_{iL})- \gamma (\mu _i\mu _j)^{2}(A_{jL}-w_{jL})]}{4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\qquad +\,\frac{(w_{iL}-w_{iH})[\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(2A_{iH}-w_{iH}-w_{iL})-\gamma (\mu _i\mu _j)^{2}(A_{jH}-w_{jH})]}{4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\quad =\frac{(w_{iL}-w_{iH})[\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(2A_{iH}-2A_{iL})-\gamma (\mu _i\mu _j)^{2}(A_{jH}-w_{jH}\!-\!A_{jL}\!+\!w_{jL})]}{4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\&\quad \ge 0. \end{aligned}$$

Relaxing the third constraint, we can convert the original constrained optimization problem into an unconstrained optimization problem. And we can show that the supplier’s objective function is concave in \( w_{iL}\) and \( w_{iH}\) respectively. In this case, the optimal response function is determined by the first order condition:

$$\begin{aligned} \left\{ \!\begin{array}{ll} \frac{\partial \Pi _{i}}{\partial w^{*}_{iL}}=\frac{2\rho \mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}-A_{iL})-\gamma (\mu _i\mu _j)^{2}\rho (A_{jH}-w_{jH})-\gamma (\mu _i\mu _j)^{2}(1-2\rho )(A_{jL}-w_{jL})-2(1-\rho )\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})( w^{*}_{iL}-\frac{c_i}{\mu _i})}{4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\ \quad \qquad =0,\\ \frac{\partial \Pi _{i}}{\partial w^{*}_{iH}}=\frac{\rho [-\gamma (\mu _i\mu _j)^{2}(A_{jH}- w_{jH})-2\mu _i^2(\mu ^{2}_{j}+\sigma ^{2}_{j})(w^{*}_{iH}-\frac{c_i}{\mu _i})]}{4(\mu ^{2}_{i}+\sigma ^{2}_{i})(\mu ^{2}_{j}+\sigma ^{2}_{j})-4\gamma ^{2}(\mu _i\mu _j)^{2}}\\ \qquad \quad =0. \end{array} \right. \end{aligned}$$

Then we get:

$$\begin{aligned} \left\{ \begin{array}{ll} {w}^{*}_{iL}({w}_{jL},{w}_{jH})= \frac{c_i}{\mu _i}-\frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}(A_{jH}-w_{jH})+\frac{\rho }{1-\rho }(A_{iH}-A_{iL})\\ ~~~~~~~~~~~~~~~~~~~~~\quad -\,\frac{\rho }{1-\rho }\frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}[A_{jH}-w_{jH}-(A_{jL}-w_{jL})],\\ w^{*}_{iH}(w_{jL},w_{jH})=\frac{c_i}{\mu _i}-\frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}(A_{jH}-w_{jH}). \end{array} \right. \end{aligned}$$

At last, we need to verify that \(w^{*}_{iL}(w_{jL},w_{jH})>w^{*}_{iH}(w_{jL},w_{jH})\).

$$\begin{aligned}&w^{*}_{iL}(w_{jL},w_{jH})=\frac{c_i}{\mu _i}+\frac{\rho }{1-\rho }(A_{iH}-A_{iL})\\&\qquad -\,\frac{\rho }{1-\rho }\frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}(A_{jH}-w_{jH})-(1-\frac{\rho }{1-\rho })\frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}(A_{jL}-w_{jL})\\&\quad \ge \frac{c_i}{\mu _i}+\frac{\rho }{1-\rho }(A_{iH}-A_{iL})-\frac{\rho }{1-\rho }\frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}(A_{jH}-w_{jH})\\&\qquad -\,\left( 1-\frac{\rho }{1-\rho }\right) \frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}(A_{jH}-w_{jH})\\&\quad \ge \frac{c_i}{\mu _i}+\frac{\rho }{1-\rho }(A_{iH}-A_{iL})-\frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}(A_{jH}-w_{jH})\\&\quad >\frac{c_i}{\mu _i}-\frac{\gamma \mu ^{2}_j}{2(\mu ^{2}_{j}+\sigma ^{2}_{j})}(A_{jH}-w_{jH})=w^{*}_{iH}(w_{jL},w_{jH}). \end{aligned}$$

Similarly, under the condition \([A_{jH}-w_{jH}-(A_{jL}-w_{jL})]> \frac{(\mu ^{2}_{j}+\sigma ^{2}_{j})(A_{iH}-A_{iL})}{\gamma \mu _j^2}\), we can solve for \(w^{*}_{iL}(w_{jL},w_{jH})\) and \(w^{*}_{iH}(w_{jL},w_{jH})\) in the same way. \(\square \)

Proof of Theorem 2

With a two-part tariff contract, from Lemma 3 we can get the supplier’s best response in a symmetric game, that is:

Under the condition \(0\le \gamma \mu ^2[A_{H}-w_{H}-(A_{L}-w_{L})] \le (\mu ^2+\sigma ^2)(A_{H}-A_{L})\), we can easily get the optimal wholesale price in both the high and low demand state:

$$\begin{aligned} \left\{ \begin{array}{ll} w^{*}_{L}=A_L+\frac{2(\mu ^2+\sigma ^2)[(1-\rho )\frac{c}{\mu }+\rho A_H-A_L]+\frac{\rho 2(\mu ^2+\sigma ^2)\gamma \mu ^2}{2(\mu ^2+\sigma ^2)-\gamma \mu ^2}(\frac{c}{\mu }-A_H)}{2(1-\rho )(\mu ^2+\sigma ^2)-(1-2\rho )\gamma \mu ^{2}},\\ w^{*}_{H}=\frac{\frac{2c}{\mu }(\mu ^2+\sigma ^2)-\gamma \mu ^2 A_H}{2(\mu ^2+\sigma ^2)-\gamma \mu ^2}. \end{array} \right. \end{aligned}$$

Thus, we have \(A_H-w_H=\frac{2(\mu ^{2}+\sigma ^{2})(A_H-\frac{c}{\mu })}{2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}}\), and also \(A_L-w_L=-\frac{2(\mu ^2+\sigma ^2)[(1-\rho )\frac{c}{\mu }+\rho A_H-A_L]+\frac{\rho 2(\mu ^2+\sigma ^2)\gamma \mu ^2}{2(\mu ^2+\sigma ^2)-\gamma \mu ^2}(\frac{c}{\mu }-A_H)}{2(1-\rho )(\mu ^2+\sigma ^2)-(1-2\rho )\gamma \mu ^{2}}\).

In this scenario, for a symmetric game the condition \(0\le \gamma \mu ^2[A_{H}-w_{H}-(A_{L}-w_{L})]\le (\mu ^2+\sigma ^2)(A_{H}-A_{L})\) is equivalent to \(\frac{\gamma \mu ^2}{\mu ^2+\sigma ^2}\le \frac{2(1-\rho )}{3-2\rho }\).

Similarly, we can also derive the symmetric equilibrium under the condition that \(\frac{\gamma \mu ^2}{\mu ^2+\sigma ^2}>\frac{2(1-\rho )}{3-2\rho }\). \(\square \)

Proof of Proposition 1

From Theorem 1, we can easily derive the first derivative of \(w^{S}_{\theta }\) with respect to \(\gamma \)

$$\begin{aligned} \frac{\partial w^{S}_{\theta }}{\partial \gamma }= & {} \frac{-\mu ^2 A_\theta [2(\mu ^2+\sigma ^2)-\gamma \mu ^2]+\mu ^2[\frac{2c}{\mu }(\mu ^2+\sigma ^2)-\gamma \mu ^2 A_\theta ]}{[2(\mu ^2+\sigma ^2)-\gamma \mu ^2]^2}\\= & {} \frac{\mu ^2(\mu ^2+\sigma ^2)(\frac{2c}{\mu }-2A_\theta )}{[2(\mu ^2+\sigma ^2)-\gamma \mu ^2]^2}\\< & {} 0. \end{aligned}$$

As \(A_\theta -w^{S}_{\theta }=\frac{2(\mu ^{2}+\sigma ^{2})(A_\theta -\frac{c}{\mu })}{2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}}\), \(q^{S}_\theta =\frac{\mu (\mu ^{2}+\sigma ^{2})(A_\theta -\frac{c}{\mu })}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}](\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})}\), and \(T^{S}_{\theta }=\frac{\mu ^2(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}]^2(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})}\), we have

$$\begin{aligned} \frac{\partial T^{S}_{\theta }}{\partial \gamma }= & {} -\frac{\mu ^4(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}]^2(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})^2}\\&+\frac{2\mu ^4(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}]^3(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})}\\= & {} \frac{3\gamma \mu ^6(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}]^3(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})^2}\\> & {} 0. \end{aligned}$$

\(\square \)

Proof of Proposition 2

With a two-part tariff contract under symmetric information, the supplier’s optimal profit is given by

$$\begin{aligned} \Pi ^{S}_{\theta }= & {} T^{S}_{\theta }+(w^{S}_{\theta }\mu -c)q^{S}_{\theta }\\= & {} \frac{\mu ^2(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}}{[2(\mu ^{2}+\sigma ^{2})- \gamma \mu ^{2}]^2(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})}\\&-\,\frac{\gamma \mu ^{2}(A_\theta -\frac{c}{\mu })}{2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}}\frac{\mu ^2(\mu ^{2}+\sigma ^{2})(A_\theta -\frac{c}{\mu })}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}](\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})} \end{aligned}$$

Then we get

$$\begin{aligned} \frac{\partial \Pi ^{S}_{\theta }}{\partial \gamma }= & {} -\frac{\mu ^4(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}]^2(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})}\\&-\,\frac{\mu ^4(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}(\mu ^{2}+\sigma ^{2}-\gamma \mu ^{2})}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}]^2(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})^2}\\&+\,\frac{2\mu ^4(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}(\mu ^{2}+\sigma ^{2}-\gamma \mu ^{2})}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}]^3(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})}\\= & {} -\frac{2\mu ^4(\mu ^{2}+\sigma ^{2})^2(A_\theta -\frac{c}{\mu })^{2}[\gamma ^2\mu ^{4}-\gamma \mu ^{2}(\mu ^{2}+\sigma ^{2})+(\mu ^{2}+\sigma ^{2})^2]}{[2(\mu ^{2}+\sigma ^{2})-\gamma \mu ^{2}]^3(\mu ^{2}+\sigma ^{2}+\gamma \mu ^{2})^2}\\< & {} 0. \end{aligned}$$

The inequality is due to the fact that the substitution coefficient \(\gamma \in [0,1]\). \(\square \)

Proof of Proposition 3

Define \(CV=\frac{\sigma ^2}{\mu ^2}\), and from Theorem 1 the optimal wholesale price can be written as \(w^{S}_{\theta }=\frac{\frac{2c}{\mu }(1+CV)-\gamma A_\theta }{2(1+CV)-\gamma }\). The first derivative of \(w^{S}_{\theta }\) with respect to CV will be

$$\begin{aligned} \frac{\partial w^{S}_{\theta }}{\partial CV}= & {} \frac{\frac{2c}{\mu }[2(1+CV)-\gamma ]-2[\frac{2c}{\mu }(1+CV)-\gamma A_\theta ]}{[2(1+CV)-\gamma ]^{2}}\\= & {} \frac{2\gamma (A_{\theta }-\frac{c}{\mu })}{[2(1+CV)-\gamma ]^{2}}\\> & {} 0. \end{aligned}$$

As \(A_\theta -w^{S}_{\theta }=\frac{2(A_\theta -\frac{c}{\mu })(1+CV)}{2(1+CV)-\gamma }\), and \(T^{S}_{\theta }=\frac{(1+CV)^2(A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )[2(1+CV)-\gamma ]^{2}}\), we have

$$\begin{aligned} \frac{\partial T^{S}_{\theta }}{\partial CV}= & {} \frac{2(1+CV)(A_\theta - \frac{c}{\mu })^{2}}{(1+CV+\gamma )[2(1+CV)-\gamma ]^{2}}-\frac{(1+CV)^2(A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )^2[2(1+CV)-\gamma ]^{2}}\\&-\,\frac{4(1+CV)^2(A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )[2(1+CV)-\gamma ]^{3}}\\= & {} \frac{[-2\gamma ^2-\gamma (1+CV)-2(1+CV)^2](1+CV)(A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )^2[2(1+CV)-\gamma ]^{3}} <0. \end{aligned}$$

\(\square \)

Proof of Proposition 4

With a two-part tariff contract under symmetric information, the supplier’s optimal profit is given by

$$\begin{aligned} \Pi ^{S}_{\theta }= & {} T^{S}_{\theta }+(w^{S}_{\theta }\mu -c)q^{S}_{\theta }\\ \!= & {} \!\frac{(1+CV)^2(A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )[2(1+CV)-\gamma ]^{2}}-\frac{\gamma (A_\theta -\frac{c}{\mu })}{2(1\!+\!CV)\!-\!\gamma }\frac{(1+CV)(A_\theta -\frac{c}{\mu })}{[2(1+CV)-\gamma ](1\!+\!CV\!+\!\gamma )} \end{aligned}$$

Then we get

$$\begin{aligned} \frac{\partial \Pi ^{S}_{\theta }}{\partial CV}= & {} \frac{(2+2CV-\gamma )(A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )[2(1+CV)-\gamma ]^{2}}-\frac{(1+CV)(1+CV-\gamma )(A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )^2[2(1+CV)-\gamma ]^{2}}\\&-\,\frac{4(1+CV)(1+CV-\gamma )(A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )[2(1+CV)-\gamma ]^{3}}\\= & {} \frac{[\gamma ^3-3\gamma (1+CV)^2-2(1+CV)^3](A_\theta -\frac{c}{\mu })^{2}}{(1+CV+\gamma )^2[2(1+CV)-\gamma ]^{3}}\\&<0. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Ma, L. Two-part tariff contracting with competing unreliable suppliers in a supply chain under asymmetric information. Ann Oper Res 257, 559–585 (2017). https://doi.org/10.1007/s10479-015-1888-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1888-3

Keywords

Navigation