[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Robust optimization is a fast growing methodology to study optimization problems with uncertain data. An uncertain vector optimization problem can be studied through its robust or optimistic counterpart, as in Ben-Tal and Nemirovski (Math Oper Res 23:769–805, 1998) and Beck and Ben-Tal (Oper Res Lett 37: 1–6, 2009). In this paper we formulate the counterparts as set optimization problems. This setting appears to be more natural, especially when the uncertain problem is a non-linear vector optimization problem. Under this setting we study the well-posedness of both the robust and the optimistic counterparts, using the embedding technique for set optimization developed in Kuroiwa and Nuriya (Proceedings of the fourth international conference on nonlinear and convex analysis, pp 297–304, 2006). To prove our main results we also need to study the notion of quasiconvexity for set-valued maps, that is the property of convexity of level set. We provide a general scheme to define the notion of level set and we study the relations among different subsequent definitions of quasi-convexity. We prove some existing notions arise as a special case in the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubin, J. P., & Frankowska, H. (1990). Set-valued analysis. Boston, MA: Birkhåuser.

    Google Scholar 

  • Bazaraa, M. S., & Shetty, C. M. (1976). Foundations of optimization. Berlin: Springer.

    Book  Google Scholar 

  • Beck, A., & Ben-Tal, A. (2009). Duality in robust optimization: Primal worst equals dual best. Operations Ressearch Letters, 37, 1–6.

    Article  Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton, US: Princeton University Press.

    Book  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23, 769–805.

    Article  Google Scholar 

  • Benoist, J., & Popovici, N. (2003). Characterization of convex and quasiconvex set-valued maps. Mathematical Methods of Operations Research, 57, 427–435.

    Article  Google Scholar 

  • Crespi, G. P., Papalia, M., & Rocca, M. (2011). Extended well-posedness of vector optimization problems: The convex case. Taiwanese Journal of Mathematics, 15, 1545–1559.

    Google Scholar 

  • Crespi, G. P., Papalia, M., & Rocca, M. (2009). Extended well-posedness of quasiconvex vector optimization problems. Journal of Optimization Theory and Applications, 141, 285–297.

    Article  Google Scholar 

  • Crespi, G. P., Guerraggio, A., & Rocca, M. (2007). Well-posedness in vector optimization problems and variational inequalities. Journal of Optimization Theory and Applications, 132, 213–226.

    Article  Google Scholar 

  • Dontchev, A. L., & Zolezzi, T. (1993). Well-posed optimization problems. Berlin: Springer.

    Book  Google Scholar 

  • Durea, M. (2008). Optimality condition for weak and firm efficiency in set-valued optimization. Journal of Mathematical Analysis and Applications, 344, 1018–1028.

    Article  Google Scholar 

  • Gutiérrez, G., Miglierina, E., Molho, E., & Novo, V. (2012). Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Analysis, 75, 1822–1833.

    Article  Google Scholar 

  • Ide, J., Köbis, E., Kuroiwa, D, Schöbel, A., & Tammer, C., (2013). The relation between multicriteria robustness concepts and set valued optimization. http://num.math.uni-goettingen.de/preprints/files/2013-25

  • Jameson, G. (1970). Ordered linear spaces, Lecture Notes in Mathematics (Vol. 141). Berlin: Springer.

    Book  Google Scholar 

  • Kuroiwa, D. (2011). Set optimization with DC objective function. In S. Akashi, D. S. Kim, T. H. Kim, G. M. Lee, W. Takahashi, & T. Tanaka (Eds.), Nonlinear and convex analysis (pp. 291–297) Yokohama: Yokohama.

  • Kuroiwa, D. (2009). On derivatives and convexity of set-valued maps and optimality conditions in set optimization. Journal of Nonlinear and Convex Analysis, 1, 41–50.

    Google Scholar 

  • Kuroiwa, D., & Nuriya, T. (2006). A generalized embedding vector space in set optimization In :Proceedings of the forth international conference on nonlinear and convex analysis (pp. 297–304).

  • Kuroiwa, D. (2003). Existence theorems of set optimization with set-valued maps. Journal of Information and Optimization sciences, 1, 73–84.

    Article  Google Scholar 

  • Kuroiwa, D. (2001). On set-valued optimization. Nonlinear Analysis, 47, 1395–1400.

    Article  Google Scholar 

  • Kuroiwa, D., Tanaka, T., & Duc Ha, T. X. (1997). On cone convexity for set-valued maps. Nonlinear Analysis, 30, 1487–1496.

    Article  Google Scholar 

  • Kuroiwa, D. (1996). Convexity for set-valued maps. Applied Mathematics Letters, 9, 97–101.

    Article  Google Scholar 

  • Loridan, P. (1995). Well-posedness in vector optimization. Mathematics and its Applications, 331, 171–192.

    Google Scholar 

  • Luc, D. T. (1989). Theory of vector optimization. Berlin: Springer.

    Book  Google Scholar 

  • Miglierina, E., Molho, E., & Rocca, M. (2005). Well-posedness ad scalarization in vector optimization. Journal of Optimization Theory and Applications, 126, 391–409.

    Article  Google Scholar 

  • Nishimura, R., Hayashi, S., & Fukushima, M. (2013). SDP reformulation for robust optimization problems based on nonconvex QP duality. Computational Optiization and Applications, 55, 21–47.

    Article  Google Scholar 

  • Rådström, H. (1952). An embedding theorem for spaces of convex sets. Proceedings of the American mathematical society, 3, 165–169.

    Article  Google Scholar 

  • Skanda, D., & Lebiedz, D. (2013). A robust optimization approach to experimental design for model discrimination of dynamical systems. Mathematical Programming, 141(Ser. A), 405–433.

    Article  Google Scholar 

  • Souyris, S., Cortés, C. E., Ordóñez, F., & Weintraub, A. (2013). A robust optimization approach to dispatching technicians under stochastic service times. Optimization Letters, 7, 1549–1568.

    Article  Google Scholar 

  • Zhang, W. Y., Li, S. J., & Teo, K. L. (2009). Well-posedness for set optimization problems. Nonlinear Analysis, 71, 3769–3778.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Rocca.

Appendix: Proof of main theorems

Appendix: Proof of main theorems

Throughout this section, \(Y\), \(K\), and \({\mathcal {Y}}\) are as defined in Sect. 2. At first we introduce a normed vector space in which \({\mathcal {Y}}\) is embedded. The approach can be found in Rådström (1952) and Kuroiwa and Nuriya (2006).

1.1 The embedding space and parametrized embedding functions

Any two couples \((A,B);(C,D)\in {\mathcal {Y}}^2\) are equivalent if \(A+D+K=B+C+K\). When this occurs we write \((A,B)\equiv (C,D)\). The equivalence family of the couple \((A,B)\) is defined by the set

$$\begin{aligned} \left[ A,B\right] :=\left\{ \left( C,D\right) \in {\mathcal {Y}}^2\,|\,\left( A,B\right) \equiv \left( C,D\right) \right\} , \end{aligned}$$

and the quotient space \({\mathcal {Y}}^2\!/\!\equiv \) is given by

$$\begin{aligned} {\mathcal {Y}}^2\!/\!\equiv := \left\{ \left[ A,B\right] \mid \left( A,B\right) \in {\mathcal {Y}}^2\right\} . \end{aligned}$$

In Kuroiwa and Nuriya (2006) it has been introduced the vector space \(\left( {\mathcal {Y}}^2\!/\!\equiv , +, \cdot \right) \), where

  • \(\left[ A,B\right] +\left[ C,D\right] =\left[ A+C,B+D\right] \);

  • \(\lambda \cdot \left[ A,B\right] =\left\{ \begin{array}{ll} \left[ \lambda A,\lambda B\right] , &{}\quad \lambda \ge 0\\ \left[ -\lambda B,-\lambda A\right] , &{}\quad \lambda <0. \end{array} \right. \)

Fix \(k\in \mathrm{int\,}{K}\). The set \(W=\{\xi \in K^+\mid \langle \xi , k\rangle =1\}\) is a weak-\(*\) compact base for \(K^+\) (Jameson 1970; Luc 1989). The embedding space \(\left( {\mathcal {Y}}^2\!/\!\equiv ,+,\cdot \right) \) is normed (Kuroiwa and Nuriya 2006; Kuroiwa 2009), introducing

$$\begin{aligned} \Vert \left[ A,B\right] \Vert := \sup _{w\in W}\left| \inf \langle w,A\rangle -\inf \langle w,B\rangle \right| . \end{aligned}$$
(10)

A partial order in \({\mathcal {Y}}^2\!/\!\equiv \) can be introduced through the pointed, closed and convex cone

$$\begin{aligned} {\mathcal {K}}:=\left\{ \left[ A,B\right] \in {\mathcal {Y}}^2\!/\!\equiv \,|\,B\le ^l_KA\right\} \end{aligned}$$

depending on the ordering cone \(K\) on \(Y\). The interior of \({\mathcal {K}}\) is given by

$$\begin{aligned} \mathrm{int\,}{{\mathcal {K}}}=\left\{ \left[ A,B\right] \in {\mathcal {Y}}^2\!/\!\equiv \,|\,B<^l_KA\right\} . \end{aligned}$$

The proof of the previous equality indeed follows taking into account that it holds \(B<^l_KA\) if and only if there exists a positive number \(r\) such that

$$\begin{aligned} A-rk \subseteq B+K, \end{aligned}$$
(11)

and (11) in turn is equivalent to

$$\begin{aligned}{}[A,B]+r\mathcal{B}_{{\mathcal {Y}}^2\!/\!\equiv }\subseteq {\mathcal {K}}, \end{aligned}$$

where \(\mathcal{B}_{{\mathcal {Y}}^2\!/\!\equiv }\) is the unit ball in \({\mathcal {Y}}^2\!/\!\equiv \).

Therefore we can define order relations in the vector space \({\mathcal {Y}}^2\!/\!\equiv \) by

$$\begin{aligned}&\left[ A,B\right] \le _{{\mathcal {K}}}\left[ C,D\right] \quad \text{ if } \left[ C,D\right] -\left[ A,B\right] \in {\mathcal {K}},\\&\text{ and }\\&\left[ A,B\right] <_{{\mathcal {K}}}\left[ C,D\right] \quad \text{ if } \left[ C,D\right] -\left[ A,B\right] \in \mathrm{int\,}{{\mathcal {K}}}. \end{aligned}$$

Next we introduce parametrized embedding functions: for each \(t\in [0,1]\), a real-valued function \(\psi _t\) on \({\mathcal {Y}}\) is defined by, for each \(A\in {\mathcal {Y}}\),

$$\begin{aligned} \psi _t(A)=[(1-t)A,-tA], \end{aligned}$$
(12)

By using the parametrized functions, family \({\mathcal {Y}}\) is embedded to normed ordered vector space \({\mathcal {Y}}^2\!/\!\equiv \).

1.2 Properties of the embedding

At first we consider a general set-valued optimization problem and observe some properties continuously hold after embedding the problem to a vector optimization problem. For a given set-valued map \(F:X\subseteq {\mathbb {R}}^n\rightarrow {\mathcal {Y}}\),

$$\begin{aligned} \min _{x\in X} F(x). \qquad (\hbox {SP}\left( F,K\right) ) \end{aligned}$$

As we already know, according to the order given by \(K\), different solution concepts are given as follows: a vector \({\bar{x}}\in X\) is said to be an \(l\)-type solution (resp. \(l\)-type weak solution) of \(\hbox {SP}\left( F,K\right) \) if

$$\begin{aligned}&x\in X, F(x)\le _K^l F\left( {\bar{x}}\right) \Rightarrow F\left( {\bar{x}}\right) \le _K^l F(x)\\&\quad (\text{ resp. }\ x\in X, F(x)<_K^l F\left( {\bar{x}}\right) \Rightarrow F\left( {\bar{x}}\right) <_K^l F(x)), \end{aligned}$$

and let \(l\)-Eff(\(\hbox {SP}\left( F,K\right) \)) (resp. \(l\)-WEff(\(\hbox {SP}\left( F,K\right) \))) be the set of all \(l\)-type solutions (resp. \(l\)-type weak solutions) of \(\hbox {SP}\left( F,K\right) \); a vector \({\bar{x}}\in X\) is said to be a \(u\)-type solution (resp. \(u\)-type weak solution) of \(\hbox {SP}\left( F,K\right) \) if

$$\begin{aligned}&x\in X, F(x)\le _K^u F\left( {\bar{x}}\right) \Rightarrow F\left( {\bar{x}}\right) \le _K^u F(x)\\&\quad (\text{ resp. }\ x\in X, F(x)<_K^u F\left( {\bar{x}}\right) \Rightarrow F\left( {\bar{x}}\right) <_K^u F(x)), \end{aligned}$$

and let \(u\)-Eff(\(\hbox {SP}\left( F,K\right) \)) (resp. \(u\)-WEff(\(\hbox {SP}\left( F,K\right) \))) be the set of all \(u\)-type solutions (resp. \(u\)-type weak solutions) of \(\hbox {SP}\left( F,K\right) \).

By using the parametrized embedding function \(\psi _t\), problem \(\hbox {SP}\left( F,K\right) \) can be embedded into a vector optimization problem on \(\left( {\mathcal {Y}}^2\!/\!\equiv , +, \cdot \right) \) as follows:

$$\begin{aligned} \min _{x\in X} f_t(x), \qquad (\hbox {VP}(f_t,{\mathcal {K}})) \end{aligned}$$

where \(f_t=\psi _t\circ F:X\rightarrow {\mathcal {Y}}^2\!/\!\equiv \). In Kuroiwa D., Set optimization–a unified embedding approach (submitted), we find the following result.

Proposition 6

  1. (i)

    \(l\)-Eff(\(\hbox {SP}\left( F,K\right) \))= Eff(VP\((f_0,{\mathcal {K}})\)), that is, \({\bar{x}}\in X\) is an \(l\)-type solution of \(\hbox {SP}\left( F,K\right) \) if and only if it is a solution of VP\((f_0,{\mathcal {K}})\);

  2. (ii)

    \(l\)-WEff(\(\hbox {SP}\left( F,K\right) \))= WEff(VP\((f_0,{\mathcal {K}})\)), that is, \({\bar{x}}\in X\) is a weak \(l\)-type minimizer of \(\hbox {SP}\left( F,K\right) \) if and only if it is a weak solution of VP\((f_0,{\mathcal {K}})\);

  3. (iii)

    \(u\)-Eff(\(\hbox {SP}\left( F,K\right) \))= Eff(VP\((f_1,{\mathcal {K}})\)), that is, \({\bar{x}}\in X\) is an \(u\)-type solution of \(\hbox {SP}\left( F,K\right) \) if and only if it is a solution of VP\((f_1,{\mathcal {K}})\);

  4. (iv)

    \(u\)-WEff(\(\hbox {SP}\left( F,K\right) \))= WEff(VP\((f_1,{\mathcal {K}})\)), that is, \({\bar{x}}\in X\) is a weak \(u\)-type minimizer of \(\hbox {SP}\left( F,K\right) \) if and only if it is a weak solution of VP\((f_1,{\mathcal {K}})\).

Next we observe \(l\) and \(u\)-type continuity of \(F\) is Hausdorff continuity of \(F+K\) and \(F-K\).

Proposition 7

For a given set-valued map \(F:X\subseteq {\mathbb {R}}^n\rightarrow {\mathcal {Y}}\), \(F\) is \(l\)-type (resp. \(u\)-type) continuous if and only if vector-valued function \(f_0\) (resp. \(f_1\)) is continuous, where \(f_t={\psi _t\circ F}: X\rightarrow {\mathcal {Y}}^2\!/\!\equiv \).

Proof

Fix \(p\in \mathrm{int\,}{K}\) and consider the \(w^*\)-compact base \(W=\{\xi \in K^+\mid \langle \xi , p\rangle =1\}\) of \(K^+\). Continuity of \(f_0\) at \({\bar{x}}\) means that for each \(\varepsilon >0\), there exists \(\delta >0\) such that, for all \(x\in {\bar{x}}+\delta \mathcal{B}_n\),

$$\begin{aligned} \left\| \left[ \left( F\left( x\right) ,F\left( {\bar{x}}\right) \right) \right] \right\| \le \varepsilon . \end{aligned}$$
(13)

(13) is equivalent to

$$\begin{aligned} -\varepsilon \le \inf \langle w,F(x)\rangle -\inf \langle w,F\left( {\bar{x}}\right) \rangle \le \varepsilon , \quad \forall w\in W, \end{aligned}$$

that is

$$\begin{aligned} \inf \langle w,F\left( {\bar{x}}\right) -\varepsilon p\rangle \le \inf \langle w,F(x)\rangle \le \inf \langle w,F\left( {\bar{x}}\right) +\varepsilon p\rangle , \quad \forall w\in W. \end{aligned}$$
(14)

Since \(\inf \langle w,A\rangle \le \inf \langle w,B\rangle \) for all \(w\in W\) if and only if \(A\le ^l_K B\) for every \(A,B\in {\mathcal {Y}}\) (Kuroiwa and Nuriya 2006), then we have (14) is equivalent to

$$\begin{aligned} F\left( {\bar{x}}\right) -\varepsilon p\le ^l_K F(x)\le ^l_K F\left( {\bar{x}}\right) +\varepsilon p. \end{aligned}$$
(15)

The equivalence of (13) and (15) shows \(f_0\) is continuous if and only if \(F\) is \(l\)-type continuous.

We can show the rest of the proof by a similar argument. \(\square \)

Proposition 8

A set-valued map \(F:X\subseteq {\mathbb {R}}^n\rightarrow {\mathcal {Y}}\) is \(l\)-type (resp. \(u\)-type) \(*\)-quasiconvex if and only if vector-valued function \(f_0\) (resp. \(f_1\)) is \({\mathcal {K}}\)-quasiconvex, where \(f_t=\psi _t\circ F:X\rightarrow {\mathcal {Y}}^2\!/\!\equiv \).

Proof

At first, we have the following observation:

$$\begin{aligned}&F(x)+B\le ^l_KA \ \quad \text{ if } \text{ and } \text{ only } \text{ if } \ \psi _0(F(x))\le _{\mathcal {K}}[A,B],\ \quad \text{ and }\\&F(x)+B\le ^u_KA \ \quad \text{ if } \text{ and } \text{ only } \text{ if } \ \psi _1(F(x))\le _{\mathcal {K}}[-B,-A]. \end{aligned}$$

From this observation, we have \(F\) is \(l\)-type (resp. \(u\)-type) \(*\)-quasiconvex if and only if \(\psi _0\circ F\) (resp. \(\psi _1\circ F\)) is \({\mathcal {K}}\)-quasiconvex.\(\square \)

A similar result holds with respect to \(K\)-convexity for set-valued maps. The proof is easy and omitted.

Proposition 9

For a given \(F:X\subseteq {\mathbb {R}}^n\rightarrow {\mathcal {Y}}\), \(F\) is \(l\)-type (resp. \(u\)-type) convex if and only if \(f_0\) (resp. \(f_1\)) is \({\mathcal {K}}\)-convex, where \(f_t=\psi _t\circ F:X\rightarrow {\mathcal {Y}}^2\!/\!\equiv \).

For general set optimization \(\hbox {SP}\left( F,K\right) \), the notions of \(l\) and \(u\)-type minimizing sequence and globally well-posedness are introduced by the same way in Sect. 4. \(\hbox {SP}\left( F,K\right) \) is \(u\)-type globally well-posed if every \(u\)-type minimizing sequence \(\left\{ x^n\right\} \) of \(\hbox {SP}\left( F,K\right) \) admits a subsequence \(\left\{ x^{n_k}\right\} \) such that \(\mathrm{dist\,} {\left( x^{n_k},u-\hbox {WEff}(\hbox {P}(F,K))\right) }\rightarrow 0\); Also \(\hbox {SP}\left( F,K\right) \) is \(l\)-type globally well-posed if every \(l\)-type minimizing sequence \(\left\{ x^n\right\} \) of \(\hbox {SP}\left( F,K\right) \) admits a subsequence \(\left\{ x^{n_k}\right\} \) such that \(\mathrm{dist\,} {\left( x^{n_k},l-\hbox {WEff}(\hbox {P}(F,K))\right) }\rightarrow 0\).

In Zhang et al. (2009) a first approach to extend global well-posedness to set optimization has been proposed. Definition 9 is slightly more general since it does not require that minimizing sequences converge to some specific weak efficient solution but just that the distance between the minimizing sequence and the set \(\mathrm{WEff\,} {\left( F,K\right) }\) converges to \(0\).

Proposition 10

Problem \(\hbox {SP}\left( F,K\right) \) is \(l\)-type (resp. \(u\)-type) globally well-posed if and only if problem VP(\(f_0,{\mathcal {K}}\)) (resp. VP(\(f_1,{\mathcal {K}}\))) is globally well-posed according to Definition 7, where \(f_t=\psi _t\circ F:X\rightarrow {\mathcal {Y}}^2\!/\!\equiv \).

Proof

In view of Proposition 6, it is enough to prove that \(\left\{ x^n\right\} \) is an \(l\)-type minimizing sequence for \(\hbox {SP}\left( F,K\right) \) if and only if it is a minimizing sequence for VP(\(f_0,{\mathcal {K}}\)) (resp. VP(\(f_1,{\mathcal {K}}\))). Indeed, if \(\left\{ x^n\right\} \) is an \(l\)-type (resp. \(u\)-type) minimizing sequence for \(\hbox {SP}\left( F,K\right) \), then there exists \(\varepsilon _n\downarrow 0\) such that

$$\begin{aligned} F\left( x^n\right) -\varepsilon _n\,p \not \subseteq F(x)+\mathrm{int\,}{K}, \quad \forall x\in X. \end{aligned}$$

Hence

$$\begin{aligned} \left[ F(x),\left\{ 0\right\} \right] \not <_{{\mathcal {K}}}\left[ F\left( x^n\right) -\varepsilon _n\,p,\left\{ 0\right\} \right] , \quad \forall x\in X \end{aligned}$$

or, equivalently,    \(\forall x\in X\)

$$\begin{aligned}&\left[ F(x),\left\{ 0\right\} \right] \not <_{{\mathcal {K}}} \left[ F\left( x^n\right) ,\left\{ 0\right\} \right] +\left[ \left\{ -\varepsilon _n\,p\right\} ,\left\{ 0\right\} \right] ,\; i.e. \\&\left[ F(x),\left\{ 0\right\} \right] \not \in \left[ F\left( x^n\right) ,\left\{ 0\right\} \right] -\mathrm{int\,}{{\mathcal {K}}}-\varepsilon _n\left[ \left\{ p\right\} ,\left\{ 0\right\} \right] . \end{aligned}$$

The proof is complete, observing that \(\left[ \left\{ p\right\} ,\left\{ 0\right\} \right] \in \mathrm{int\,}{{\mathcal {K}}}\), (Kuroiwa 2009).

Conversely, assume that \(\left\{ x^n\right\} \) is a minimizing sequence for VP(\(f_0,{\mathcal {K}}\)). Then, for some \(\left[ P,Q\right] \in \mathrm{int\,}{{\mathcal {K}}}\) and some \(\varepsilon _n\downarrow 0\), we have

$$\begin{aligned} \left( \psi _0\circ F\right) \left( x\right) \not <_{{\mathcal {K}}}\left( \psi _0\circ F\right) \left( x^n\right) -\varepsilon _n\, \left[ P,Q\right] , \quad \forall x\in X. \end{aligned}$$

By Lemma 2, we can choose \(\left[ P,Q\right] =\left[ {\left\{ p\right\} ,\left\{ 0\right\} }\right] \in \mathrm{int\,}{{\mathcal {K}}}\), with \(p\in \mathrm{int\,}{K}\). Hence, for all \(x\in X\) we have

$$\begin{aligned} \left[ F(x),\left\{ 0\right\} \right] \not \in \left[ F\left( x^n\right) ,\left\{ 0\right\} \right] -\mathrm{int\,}{{\mathcal {K}}}-\varepsilon _n\left[ \left\{ p\right\} ,\left\{ 0\right\} \right] \end{aligned}$$

from which the conclusion easily follows.

The other equivalence is similar and we leave the proof to the reader.\(\square \)

Proposition 11

For a given set-valued map \(F:X\subseteq {\mathbb {R}}^n\rightarrow {\mathcal {Y}}\), \(F\) is \(l\)-type (resp. \(u\)-type) lower bounded if and only if \(f_0\) (resp. \(f_1\)) is lower bounded, where \(f_t=\psi _t\circ F:X\rightarrow {\mathcal {Y}}^2\!/\!\equiv \).

Proof

We observe

$$\begin{aligned}&\mathrm{Lev}(F+B,\le _K^l,A)=\mathrm{Lev}(f_0,\le _{\mathcal {K}},\left[ A,B\right] ) \quad \text{ and }\\&\mathrm{Lev}(F+B,\le _K^u,A)=\mathrm{Lev}(f_1,\le _{\mathcal {K}},[-B,-A]) \end{aligned}$$

for all \(\left[ A,B\right] \in {\mathcal {Y}}\). The proof is follows from Proposition 5.\(\square \)

1.3 Proof of Theorem 2

Proof

In the uncertain vector optimization problem (UP), let \(F=f(\cdot ,{\mathcal {U}})\) and \(f_t=\psi _t\circ F:X\rightarrow {\mathcal {Y}}^2\!/\!\equiv \). If \(F\) is \(u\)-type continuous, \(u\)-type lower bounded, \(u\)-type \(*\)-quasiconvex, and \(\mathrm{WSol}\mathrm{(RP)}=u\)-WEff(\(\hbox {SP}\left( F,K\right) \)) is nonempty and bounded, then \(f_1\) is continuous, \(f_1\) is lower bounded, \(f_1\) is \({\mathcal {K}}\)-quasiconvex, and WEff(VP\((f_1,{\mathcal {K}})\)) is nonempty and bounded, according to Propositions 7, 8, 11, and 6. Then we have VP(\(f_1,{\mathcal {K}}\)) is globally well-posed from Theorem 1. From Proposition 10, problem \(\hbox {SP}\left( F,K\right) \) is \(u\)-type well-posed, that is the robust counterpart of (UP) is \(u\)-type well-posed.

The rest of the proof is analogous.\(\square \)

1.4 Proof of Theorem 4

Proof

In the uncertain vector optimization problem (UP), let \(F=f(\cdot ,{\mathcal {U}})\) and \(f_t=\psi _t\circ F:X\rightarrow {\mathcal {Y}}^2\!/\!\equiv \). If \(F\) is \(u\)-type convex, and \(\mathrm{WSol}\mathrm{(RP)}=u\)-WEff(\(\hbox {SP}\left( F,K\right) \)) is nonempty and bounded, then \(f_1\) is \({\mathcal {K}}\)-convex, and WEff(VP\((f_1,{\mathcal {K}})\)) is nonempty and bounded. according to Propositions 9 and 6. Then we have VP(\(f_1,{\mathcal {K}}\)) is globally well-posed from Theorem 3. The proof now is similar to that of Theorem 2.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespi, G.P., Kuroiwa, D. & Rocca, M. Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization. Ann Oper Res 251, 89–104 (2017). https://doi.org/10.1007/s10479-015-1813-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1813-9

Keywords

Navigation