[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The nearest MPSS pattern in data envelopment analysis

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The concept of Returns to scale is an important topic in data envelopment analysis since it identifies whether the expansion or contraction of the unit under assessment is beneficial. The quantity of the beneficial expansion or contraction is determined by introducing a most productive scale size (MPSS) pattern. This paper aims at introducing a notion of the nearest MPSS pattern which is the closest MPSS pattern among the others. By the aid of this pattern, a unit would be able to reach its optimal size more easily and by small changes in its inputs and outputs. Finding such a pattern is investigated through BCC and multiplicative models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amin, G. R. (2009). Comments on finding the most efficient DMUs in DEA: An improved integrated mode. Computers & Industrial Engineering, 56, 1701–1702.

    Article  Google Scholar 

  • Banker, R. (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17, 35–44.

    Article  Google Scholar 

  • Banker, R. D., Chang, H., & Cooper, W. W. (1996a). Equivalence and implementation of alternative methods for determining returns to scale in data envelopment analysis. European Journal of Operational Research, 89, 473–481.

    Article  Google Scholar 

  • Banker, R. D., Bardhan, I., & Cooper, W. W. (1996b). A note on returns to scale in DEA. European Journal of Operational Research, 88, 583–585.

    Article  Google Scholar 

  • Banker, R., Charnes, A., & Cooper, W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30, 1078–1092.

    Article  Google Scholar 

  • Banker, R., Cooper, W., Seiford, L., Thrall, R., & Zhu, J. (2004). Returns to scale in different dea models. European Journal of Operational Research, 154, 345–362.

    Article  Google Scholar 

  • Banker, R., & Maindiratta, A. (1986). Piecewise loglinear estimation of efficient production surfaces. Management Science, 32, 126–135.

    Article  Google Scholar 

  • Banker, R. D., & Natarajan, R. (2008). Evaluating contextual variables affecting productivity using data envelopment analysis. Operations Research, 56, 45–58.

    Article  Google Scholar 

  • Banker, R., & Thrall, R. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of Operational Research, 62, 74–84.

    Article  Google Scholar 

  • Butler, T. W., & Li, L. (2005). The utility of returns to scale in DEA programming: An analysis of Michigan rural hospitals. European Journal of Operational Research, 161, 469–477.

    Article  Google Scholar 

  • Cao, X., & Yang, F. (2011). Measuring the performance of internet companies using a two-stage data envelopment analysis model. Enterprise Information Systems, 5, 207–217.

    Article  Google Scholar 

  • Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the eciency of decision making units. European journal of operational research, 2, 429–444.

    Article  Google Scholar 

  • Cook, W. D., & Seiford, L. M. (2009). Equivalence and implementation of alternative methods for determining returns to scale in data envelopment analysis. European Journal of Operational Research, 192, 1–17.

    Article  Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Tone, K. (2006). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software (2nd ed.). New York: Springer.

    Google Scholar 

  • Cooper, W. W., Thompson, R. G., & Thrall, R. M. (1996). Extensions and new developments in DEA. The Annals of Operations Research, 66, 3–45.

  • Ertay, T., Ruan, D., & Tuzkaya, U. R. (2006). Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Information Sciences, 176, 237–262.

    Article  Google Scholar 

  • Eslami, R., & Khoveyni, M. (2013). Right and left returns to scales in data envelopment analysis: Determining type and measuring value. Computers & Industrial Engineering, 65, 500–508.

    Article  Google Scholar 

  • Hollingsworth, B., Dawson, P. J., & Maniadakis, N. (1999). Efficiency measurement of health care: A review of nonparametric methods and applications. Health Care Management Science, 2, 161–172.

    Article  Google Scholar 

  • Khodabakhshi, M. (2009). Estimating most productive scale size with stochastic data in data envelopment analysis. Economic Modelling, 26, 968–973.

    Article  Google Scholar 

  • Mehdiloozad, M., Sahoo, B. K., & Roshdi, I. (2014). Generalized multiplicative directional distance function for efficiency measurement in DEA. European Journal of Operational Research, 3, 679–688.

    Article  Google Scholar 

  • Ouellette, P., Petit, P., Tessier-Parent, L., & Vigeant, S. (2010). Introducing regulation in the measurement of efficiency, with an application to the Canadian air carriers industry. European Journal of Operational Research, 200, 216–226.

    Article  Google Scholar 

  • Seiford, L. M., & Zhu, J. (1998). On alternative optimal solutions in the estimation of returns to scale in DEA. European Journal of Operational Research, 108, 149–152.

    Article  Google Scholar 

  • Seiford, L. M., & Zhu, J. (1999). An investigation of returns to scale in data envelopment analysis. OMEGA, 27, 1–11.

    Article  Google Scholar 

  • Soleimani-damaneh, M. (2012). On a basic definition of returns to scale. Operations Research Letters, 40, 144–147.

    Article  Google Scholar 

  • Toloo, M. (2012). On finding the most BCC-efficient DMU: A new integrated MIPDEA model. Applied Mathematical Modelling, 36, 5515–5520.

    Article  Google Scholar 

  • Toloo, M., & Nalchigar, S. (2009). A new integrated DEA model for finding most BCC-efficient DMU. Applied Mathematical Modelling, 33, 597–604.

    Article  Google Scholar 

  • Wanke, P. F. (2012). Efficiency of Brazil’s airports: Evidences from bootstrapped DEA and FDH estimates. Journal of Air Transport Management, 23, 47–53.

    Article  Google Scholar 

  • Wang, Y. M., & Lan, Y. X. (2013). Estimating most productive scale size with double frontiers data envelopment analysis. Economic Modelling, 33, 182–186.

    Article  Google Scholar 

  • Xing, Y., Li, L., Bi, Z., Wilamowska-Korsak, M., & Zhang, L. (2013). Operations research (OR) in service industries: A comprehensive review. Systems Research and Behavioral Science, 30, 300–353.

    Article  Google Scholar 

  • Yasar, O. A., Marcos, E. L., Maria, S. C. L., Angela, C. M. D. S., Roberto, F., & Basilio, B. P. (2011). Evaluating the Performance of Brazilian University Hospitals. Annals of Operations Research, 178, 247–261.

    Google Scholar 

  • Zarepisheh, M., Khorram, E., & Jahanshahloo, G. R. (2009). Returns to scale in multiplicative models in data envelopment analysis. Annals of Operations Research, 173, 195–206.

    Article  Google Scholar 

  • Zarepisheh, M., Soleimani-damaneh, M., & Pourkarimi, L. (2006). Determination of returns to scale by CCR formulation without chasing down alternative optimal solutions. Applied mathematics letters, 19, 964–967.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their helpful suggestions during the revision of this paper. This article is based on a research project supported by Islamic Azad University, Neyshabur Branch. Therefore, the authors wish to thank the Islamic Azad University, Neyshabur Branch, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Davoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoodi, A., Zarepisheh, M. & Rezai, H.Z. The nearest MPSS pattern in data envelopment analysis. Ann Oper Res 226, 163–176 (2015). https://doi.org/10.1007/s10479-014-1670-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1670-y

Keywords

Navigation