[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In many appointment-based logistics systems customer orders may be served within a set of consecutive periods/days (i.e. a period window). In this case, the Multi-Period Vehicle Routing Problem (MPVRP) is relevant, and its efficient solution may lead to significant operational improvements. In this paper we investigate the MPVRP with Time Windows (MPVRPTW). The latter are time intervals within each period of the period window, during which service may be provided to the customer. A general model and an exact method to solve the MPVRPTW are presented. The solution method is based on column generation. Furthermore, two novel, efficient techniques to accelerate the solution procedure of the MPVRPTW are proposed. These techniques exploit the structure of the multi-period setting in order to identify similarities within the different subproblems and, thus, avoid solving every subproblem at each iteration. The experimental study analyzed the performance of the proposed methods systematically for various problem parameters, such as geographical distribution of customers and period window patterns. In most cases, the new methods improve significantly the efficiency of convergence to the optimal solution as compared to the classical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreatta, G., & Lulli, G. (2008). A multi-period TSP with stochastic regular and urgent demands. European Journal of Operational Research, 185, 122–132.

    Article  Google Scholar 

  • Angelelli, E., Savelsbergh, M. W. P., & Speranza, M. G. (2007a). Competitive analysis of a dispatch policy for a dynamic multi-period routing problem. Operations Research Letters, 35(6), 713–721.

    Article  Google Scholar 

  • Angelelli, E., Speranza, M. G., & Savelsbergh, M. W. P. (2007b). Competitive analysis for dynamic multi-period uncapacitated routing problems. Networks, 49(4), 308–317.

    Article  Google Scholar 

  • Angelelli, E., Bianchessi, N., Mansini, R., & Speranza, M. G. (2009). Short term strategies for a dynamic multi-period routing problem. Transportation Research. Part C, 17(2), 106–119.

    Article  Google Scholar 

  • Athanasopoulos, T. (2011). The multi-period vehicle routing problem and its applications. PhD thesis, Financial and Management Engineering, University of the Aegean.

  • Athanasopoulos, T., & Minis, I. (2010). Multi-period routing in hybrid courier operations. In I. Minis, V. Zeimpekis, G. Dounias, & N. Ampazis (Eds.), Supply chain optimization, design and management: advances and intelligent methods (pp. 232–251). Hershey: IGI Global.

    Chapter  Google Scholar 

  • Bard, J. F., Kontoravdis, G., & Yu, G. (2002). A branch-and-cut procedure for the vehicle routing problem with time windows. Transportation Science, 36(2), 250–269.

    Article  Google Scholar 

  • Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: column generation for solving huge integer programs. Operations Research, 46(3), 316–329.

    Article  Google Scholar 

  • Battarra, M. (2010). Exact and heuristic algorithms for routing problems. PhD thesis, University of Bologna.

  • Bierlaire, M., Eggenberg, N., & Salani, M. (2006). Column generation methods for disrupted airline schedules. In Proceedings of the sixth triennial symposium on transportation analysis, Thailand.

    Google Scholar 

  • Bertazzi, L., Savelsbergh, M., & Speranza, M. G. (2008). Inventory routing. In B. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: latest advances and new challenges (pp. 49–72). Berlin: Springer.

    Chapter  Google Scholar 

  • Bostel, N., Dejax, P., Guez, P., & Tricoire, F. (2008). Multiperiod planning and routing on a rolling horizon for field force optimization logistics. In B. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: latest advances and new challenges (pp. 503–525). Berlin: Springer.

    Chapter  Google Scholar 

  • Campbell, A. M., & Savelsbergh, M. (2004). A decomposition approach for the inventory routing problem. Transportation Science, 38(4), 488–502.

    Article  Google Scholar 

  • Campbell, A., Clarke, L., Kleywegt, A., & Savelsbergh, M. (1998). Inventory routing. In T. Crainic & G. Laporte (Eds.), Fleet management and logistics (pp. 95–112). Boston: Kluwer.

    Chapter  Google Scholar 

  • Ceselli, A., Righini, G., & Salani, M. (2009). A column generation algorithm for a vehicle routing problem with economies of scale and additional constraints. Transportation Science, 43(1), 56–69.

    Article  Google Scholar 

  • Chabrier, A. (2006). Vehicle routing problem with elementary shortest path based column generation. Computers & Operations Research, 33, 2972–2990.

    Article  Google Scholar 

  • Christofides, N., & Beasley, J. E. (1984). The period routing problem. Networks, 14, 237–256.

    Article  Google Scholar 

  • Cordeau, J. F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30, 105–119.

    Article  Google Scholar 

  • Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M. M., & Soumis, F. (2002). The VRP with time windows. In P. Toth & D. Vigo (Eds.), SIAM monographs on discrete mathematics and applications: the vehicle routing problem (pp. 157–193). Philadelphia: SIAM.

    Chapter  Google Scholar 

  • Danna, E., & Le Pape, C. (2005). Branch-and-price heuristics: a case study on the vehicle routing problem with time windows. In G. Desaulniers, J. Desrosiers, & M. M. Solomon (Eds.), Column generation (pp. 99–129). Berlin: Springer.

    Chapter  Google Scholar 

  • Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research, 8, 101–111.

    Article  Google Scholar 

  • Desrochers, M. (1988). An algorithm for the shortest path problem with resource constraints. Les cahiers du GERAD no. G-88-27.

  • Desrosiers, J., & Lübbecke, M. (2005). A primer in column generation. In G. Desaulniers, J. Desrosiers, & M. Solomon (Eds.), Column generation (pp. 1–32). New York: Springer.

    Chapter  Google Scholar 

  • Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with time windows. Operations Research, 40, 342–354.

    Article  Google Scholar 

  • Dror, M. (1994). Note on the complexity of the shortest path models for column generation in VRPTW. Operations Research, 42, 977–979.

    Article  Google Scholar 

  • Dror, M., Ball, M., & Golden, B. L. (1985). Computational comparison of algorithms for the inventory routing problem. Annals of Operations Research, 4, 3–23.

    Article  Google Scholar 

  • Eggenberg, N., Salani, M., & Bierlaire, M. (2010). Constraint-specific recovery network for solving airline recovery problems. Computers & Operations Research, 37(6), 1014–1026.

    Article  Google Scholar 

  • Eksioglu, B., Vural, A. F., & Reisman, A. (2009). The vehicle routing problem: a taxonomic review. Computers & Industrial Engineering, 57(4), 1472–1483.

    Article  Google Scholar 

  • Feillet, D., Dejax, P., Gendreau, M., & Gueguen, C. (2004). An exact algorithm for the elementary shortest path problem with resource constraints: application to some vehicle routing problems. Networks, 44(3), 216–229.

    Article  Google Scholar 

  • Feillet, D., Gendreau, M., & Rousseau, L. M. (2005). New refinements for the solution of vehicle routing problems with branch and price (Technical Report C7PQMR PO2005-08-X). Center for Research on Transportation, Montreal.

  • Francis, P., Smilowitz, K., & Tzur, M. (2008). The period vehicle routing problem and its extensions. In B. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: latest advances and new challenges (pp. 73–102). Berlin: Springer.

    Chapter  Google Scholar 

  • Golden, B., Raghavan, S., & Wasil, E. (2008). Operations research/computer science interfaces series: Vol. 43. The vehicle routing problem: latest advances and new challenges. Berlin: Springer.

    Book  Google Scholar 

  • Jepsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-row in-equalities applied to the vehicle-routing problem with time windows. Operations Research, 56(2), 497–511.

    Article  Google Scholar 

  • Kallehauge, B., Larsen, J., Madsen, O. B., & Solomon, M. M. (2005). The vehicle routing problem with time windows. In G. Desaulniers, J. Desrosiers, & M. M. Solomon (Eds.), Column generation (pp. 67–98). Berlin: Springer.

    Chapter  Google Scholar 

  • Kohl, N. (1995). Exact methods for time constrained routing and related scheduling problems. PhD thesis, Department of Mathematical Modelling, Technical University of Denmark.

  • Kohl, N., Desrosiers, J., Madsen, O. B. G., Solomon, M. M., & Soumis, F. (1999). 2-path cuts for the vehicle routing problem with time windows. Transportation Science, 33(1), 101–116.

    Article  Google Scholar 

  • Larsen, J. (2001). Parallelization of the vehicle routing problem with time windows. PhD thesis (IMM-PHD-2001-62), Department of Mathematical Modeling, Technical University of Denmark.

  • Mladenovic, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24, 1097–1100.

    Article  Google Scholar 

  • Mourgaya, M., & Vanderbeck, F. (2007). Column generation based heuristic for tactical planning in multi-period vehicle routing. European Journal of Operational Research, 183(3), 1028–1041.

    Article  Google Scholar 

  • Petersen, B. (2011). Shortest paths and vehicle routing. PhD thesis, DTU Management Engineering.

  • Petersen, B., Pisinger, D., & Spoorendonk, S. (2008). Chvatal-Gomory rank-1 cuts used in a Dantzig-Wolfe decomposition of the vehicle routing problem with time windows. In B. Golden, R. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: latest advances and new challenges (pp. 397–420). Berlin: Springer.

    Chapter  Google Scholar 

  • Pirkwieser, S., & Raidl, G. R. (2009). A column generation approach for the periodic vehicle routing problem with time windows. In M. G. Scutellà et al. (Eds.), Proceedings of the international network optimization conference, Pisa, Italy (pp. 26–29).

    Google Scholar 

  • Righini, G., & Salani, M. (2006). Symmetry helps: bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Discrete Optimization, 3(3), 255–273.

    Article  Google Scholar 

  • Righini, G., & Salani, M. (2008). New dynamic programming algorithms for the resource constrained shortest path problem. Networks, 51(3), 155–170.

    Article  Google Scholar 

  • Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35, 254–265.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (2002). SIAM monographs on discrete mathematics and applications: the vehicle routing problem. Philadelphia: SIAM.

    Book  Google Scholar 

  • Tricoire, F. (2006). Optimization des tournees de vehicules et de personnels de maintenance: application a la distribution et au traitement des eaux. PhD thesis, University of Nantes, France.

  • Tricoire, F. (2007). Vehicle and personnel routing optimization in the service sector: application to water distribution and treatment, 4OR, 5(2), 165–168.

    Article  Google Scholar 

  • Wen, M., Cordeau, J., Laporte, G., & Larsen, J. (2010). The dynamic multi-period vehicle routing problem. Computers & Operations Research, 37(9), 1615–1623.

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the 03ED067 project, implemented within the framework of the “Reinforcement Programme of Human Research Manpower” (PENED) and co-financed by National and Community Funds (20 % from the Greek Ministry of Development—General Secretariat of Research and Technology and 80 % from E.U.—European Social Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Minis.

Appendix: Test results

Appendix: Test results

Table 6 presents (a) the number of solved instances per each problem set and pattern and (b) the cumulative computational times per problem set, pattern and solution method (in seconds).

Table 6 Computational time results per problem set, period window pattern and solution method

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athanasopoulos, T., Minis, I. Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework. Ann Oper Res 206, 1–22 (2013). https://doi.org/10.1007/s10479-013-1366-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1366-8

Keywords

Navigation