[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An efficient memetic algorithm for the graph partitioning problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Given a graph and an integer k, the goal of the graph partitioning problem is to find a partition of the vertex set in k classes, while minimizing the number of cut edges, and respecting a balance constraint between the classes. In this paper, we present a new memetic algorithm for the solution of the problem which uses both a tabu operator and a specialized crossover operator. The algorithm is tested by using the benchmarks of the graph partitioning archive. Our experiments show our memetic algorithm to outperform state-of-the-art algorithms proposed so far for the problem and to reach new records for a majority of the tested benchmarks instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banos, R., Gil, C., Montoya, F. G., & Ortega, J. (2004). A parallel multilevel metaheuristic for graph partitioning. Journal of Heuristics, 10, 315–336.

    Article  Google Scholar 

  • Banos, R., Gil, C., Ortega, J., & Montoya, F. G. (2003). Multilevel heuristic algorithm for graph partitioning. In LNCS: Vol. 2611. Proceedings third European workshop on evolutionary computation in combinatorial optimization (pp. 143–153). Berlin: Springer.

    Google Scholar 

  • Bichot, C.-E. (2006). A metaheuristic based on fusion and fission for partitioning problems. In 20th international parallel and distributed processing symposium (IPDPS) 2006.

    Google Scholar 

  • Falkenauer, E. (1998). Genetic algorithms and grouping problems. New York: Wiley.

    Google Scholar 

  • Fiduccia, C. M., & Mattheyses, R. M. (1982). Multilevel heuristic algorithm for graph partitioning. In 19th ACM/IEEE design automation conference (DAC) (pp. 175–181).

    Google Scholar 

  • Galinier, P., & Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, 3, 379–397.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman.

    Google Scholar 

  • Glass, C. A., & Prügel-Bennett, A. (2003). Genetic algorithm for graph colouring: exploration of Galinier and Hao’s algorithm. Journal of Combinatorial Optimization, 7, 229–236.

    Article  Google Scholar 

  • Glover, F. (1989). Tabu search (part i). ORSA Journal on Computing, 1, 190–206.

    Google Scholar 

  • Grefenstette, J. J. (1987). Incorporating problem specific knowledge in genetic algorithms. In Davis, L. (Ed.), Genetic algorithms and simulated annealing (pp. 42–60). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Hendrickson, B., & Leland, R. (1995). A multilevel algorithm for partitioning graphs.

    Google Scholar 

  • Hertz, A., & de Werra, D. (1987). Using tabu search techniques for graph coloring. Computing, 39, 345–351.

    Article  Google Scholar 

  • Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Shevon, C. (1991). Optimization by simulated annealing: an experimental evaluation; part ii, graph coloring and number partitioning. Operations Research, 39, 378–406.

    Article  Google Scholar 

  • Karypis, G., & Kumar, V. (1996). Parallel multilevel k-way partitioning scheme for irregular graphs (Technical Report TR 96-036). Minneapolis: Dept. of Computer Science, University of Minnesota.

  • Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J., 49(2), 291–307.

    Google Scholar 

  • Lang, K., & Rao, S. (2004). A flow-based method for improving the expansion or conductance of graph cuts. In LNCS: Vol. 2611. Integer programming and combinatorial optimization (pp. 325–337). Berlin: Springer.

    Chapter  Google Scholar 

  • Meyerhenke, H., Monien, B., & Sauerwald, T. (2008). A new diffusion-based multilevel algorithm for computing graph partitions of very high quality. In Proc. 22nd IEEE intl. parallel and distributed processing symposium IPDPS’08.

    Google Scholar 

  • Mühlenbein, H. (1992). Parallel genetic algorithm in combinatorial optimization. In Computer science and operations research (pp. 441–453).

    Google Scholar 

  • Soper, A. J., Walshaw, C., & Cross, M. (2004). A combined evolutionary search and multilevel optimisation approach to graph partitioning. Journal of Global Optimization, 29(2), 225–241.

    Article  Google Scholar 

  • Walshaw, C. (2004). Multilevel refinement for combinatorial optimisation problems. Annals of Operations Research, 131, 325–372.

    Article  Google Scholar 

  • Walshaw, C., & Cross, M. (2000). Mesh partitioning: a multilevel balancing and refinement algorithm. SIAM J.Sci. Comput., 22(1), 63–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Galinier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galinier, P., Boujbel, Z. & Coutinho Fernandes, M. An efficient memetic algorithm for the graph partitioning problem. Ann Oper Res 191, 1–22 (2011). https://doi.org/10.1007/s10479-011-0983-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0983-3

Keywords

Navigation