[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Normal form backward induction for decision trees with coherent lower previsions

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We examine normal form solutions of decision trees under typical choice functions induced by lower previsions. For large trees, finding such solutions is hard as very many strategies must be considered. In an earlier paper, we extended backward induction to arbitrary choice functions, yielding far more efficient solutions, and we identified simple necessary and sufficient conditions for this to work. In this paper, we show that backward induction works for maximality and E-admissibility, but not for interval dominance and Γ-maximin. We also show that, in some situations, a computationally cheap approximation of a choice function can be used, even if the approximation violates the conditions for backward induction; for instance, interval dominance with backward induction will yield at least all maximal normal form solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustin, T. (2001). On decision making under ambiguous prior and sampling information. In G. de Cooman, T. Fine, S. Moral, T. Seidenfeld (eds.), ISIPTA01: proceedings of the second international symposium on imprecise probabilities.

    Google Scholar 

  • Boole, G. (1854). An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. London: Walton and Maberly.

    Google Scholar 

  • Clemen, R. T., & Reilly, T. (2001). Making hard decisions. Belmont: Duxbury.

    Google Scholar 

  • de Condorcet, M. (1785). Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix. Paris: L’Imprimerie Royale.

    Google Scholar 

  • De Cooman, G., & Troffaes, M. C. M. (2005). Dynamic programming for deterministic discrete-time systems with uncertain gain. International Journal of Approximate Reasoning, 39(2–3), 257–278.

    Article  Google Scholar 

  • de Finetti, B. (1974–1975). Theory of probability: a critical introductory treatment. New York: Wiley. Two volumes.

    Google Scholar 

  • Gross, J., & Yellen, J. (1999). Graph theory and its applications. London: CRC Press.

    Google Scholar 

  • Hammond, P. (1988). Consequentialist foundations for expected utility. Theory and Decision, 25(1), 25–78.

    Article  Google Scholar 

  • Harmanec, D. (1999). A generalization of the concept of Markov decision process to imprecise probabilities. In 1st international symposium on imprecise probabilities and their applications (pp. 175–182).

    Google Scholar 

  • Huntley, N., & Troffaes, M. C. M. (2011) Subtree perfectness, backward induction, and normal-extensive form equivalence for single agent sequential decision making under arbitrary choice functions. arXiv:1109.3607v1 [math.ST]

  • Huntley, N., & Troffaes, M. C. M. (2008). An efficient normal form solution to decision trees with lower previsions. In D. Dubois, M. A. Lubiano, H. Prade, M. A. Gil, P. Grzegorzewski, O. Hryniewicz (eds.), Soft methods for handling variability and imprecision, advances in soft computing (pp. 419–426). Berlin: Springer.

    Chapter  Google Scholar 

  • Huntley, N., & Troffaes, M. C. M. (2009). Characterizing factuality in normal form sequential decision making. In T. Augustin, F. P. A. Coolen, S. Moral, M. C. M. Troffaes (eds.), ISIPTA’09: proceedings of the sixth international symposium on imprecise probability: theories and applications (pp. 239–248).

    Google Scholar 

  • Jaffray, J. (1999). Rational decision making with imprecise probabilities. In 1st international symposium on imprecise probabilities and their applications (pp. 183–188).

    Google Scholar 

  • Kikuti, D., Cozman, F., & de Campos, C. (2005). Partially ordered preferences in decision trees: computing strategies with imprecision in probabilities. In R. Brafman, U. Junker (eds.), IJCAI-05 multidisciplinary workshop on advances in preference handling (pp. 118–123).

    Google Scholar 

  • Kyburg, H. (1983). Rational belief. Behavioral and Brain Sciences, 8(2), 231–273.

    Article  Google Scholar 

  • LaValle, I., & Wapman, K. (1986). Rolling back decision trees requires the independence axiom! Management Science, 32(3), 382–385.

    Article  Google Scholar 

  • Levi, I. (1980). The enterprise of knowledge. London: MIT Press.

    Google Scholar 

  • Lindley, D. V. (1985). Making decisions (2nd ed.). London: Wiley.

    Google Scholar 

  • Luce, R., & Raiffa, H. (1957). Games and decisions: introduction and critical survey. New York: Wiley.

    Google Scholar 

  • Machina, M. (1989). Dynamic consistency and non-expected utility models of choice under uncertainty. Journal of Economic Literature, 27, 1622–1688.

    Google Scholar 

  • McClennen, E. F. (1990). Rationality and dynamic choice: foundational explorations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Miranda, E. (2008). A survey of the theory of coherent lower previsions. International Journal of Approximate Reasoning, 48(2), 628–658.

    Article  Google Scholar 

  • Plott, C. (1973). Path independence rationality, and social choice. Econometrica, 41(6), 1075–1091.

    Article  Google Scholar 

  • Radner, R., & Marschak, J. (1954). Note on some proposed decision criteria. In R. M. Thrall, C. H. Coombs, R. L. Davies (eds.), Decision processes (pp. 61–68). New York: Wiley.

    Google Scholar 

  • Raiffa, H., & Schlaifer, R. (1961). Applied Statistical Decision Theory. Boston: Harvard University Press.

    Google Scholar 

  • Ramsey, F. P. (1931). Truth and probability. In R. B. Braithwaite (ed.), Foundations of mathematics and other logical essays (pp. 156–198). London: Routledge and Kegan Paul (Chap. VII) Published posthumously.

    Google Scholar 

  • Ray, P. (1973). Independence of irrelevant alternatives. Econometrica, 41(5), 987–991.

    Article  Google Scholar 

  • Ross, S. (2006). A first course in probability (7th ed.). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Seidenfeld, T. (1988). Decision theory without ‘independence’ or without ‘ordering’: what is the difference? Economics and Philosophy, 4, 267–290.

    Article  Google Scholar 

  • Seidenfeld, T. (2004). A contrast between two decision rules for use with (convex) sets of probabilities: Γ-maximin versus E-admissibility. Synthese, 140, 69–88.

    Article  Google Scholar 

  • Seidenfeld, T., Schervish, M. J., & Kadane, J. B. (2007). Coherent choice functions under uncertainty. In 5th international symposium on imprecise probability: theories and applications (pp. 385–394).

    Google Scholar 

  • Sen, A. K. (1977). Social choice theory: a re-examination. Econometrica, 45(1), 53–89.

    Article  Google Scholar 

  • Smith, C. A. B. (1961). Consistency in statistical inference and decision. Journal of the Royal Statistical Society B, 23, 1–37.

    Google Scholar 

  • Troffaes, M. C. M. (2007). Decision making under uncertainty using imprecise probabilities. International Journal of Approximate Reasoning, 45, 17–29.

    Article  Google Scholar 

  • Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.

    Google Scholar 

  • Williams, P. M. (1975). Notes on conditional previsions (Tech. rep.). School of Math. and Phys. Sci., Univ. of Sussex.

  • Williams, P. M. (2007). Notes on conditional previsions. International Journal of Approximate Reasoning, 44(3), 366–383.

    Article  Google Scholar 

  • Zaffalon, M., Wesnes, K., & Petrini, O. (2003). Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artificial Intelligence in Medicine, 29(1–2), 61–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias C. M. Troffaes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntley, N., Troffaes, M.C.M. Normal form backward induction for decision trees with coherent lower previsions. Ann Oper Res 195, 111–134 (2012). https://doi.org/10.1007/s10479-011-0968-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0968-2

Keywords

Navigation