[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A portfolio theory approach to crop planning under environmental constraints

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper presents a multiobjective model for crop planning in agriculture. The approach is based on portfolio theory. The model takes into account weather risks, market risks and environmental risks. Input data include historical land productivity data for various crops, soil types and yield response to fertilizer/pesticide application. Several environmental levels for the application of fertilizers/pesticides, and the monetary penalties for overcoming these levels, are also considered. Starting from the multiobjective model we formulate several single objective optimization problems: the minimum environmental risk problem, the maximum expected return problem and the minimum financial risk problem. We prove that the minimum environmental risk problem is equivalent to a mixed integer problem with a linear objective function. Two numerical results for the minimum environmental risk problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfandari, L., Lemalade, J. L., Nagih, A., & Plateau, G. (2009). A MIP flow model for crop-rotation planning in a sustainable development context. Annals of Operation Research. doi:10.1007/s10479-009-0553-0.

    Google Scholar 

  • Annetts, J. E., & Audsley, E. (2002). Multiple objective linear programming for environmental farm planning. The Journal of the Operational Research Society, 53, 933–943.

    Article  Google Scholar 

  • Barrett, C., Reardon, T., & Webb, P. (2001). Nonfarm income diversification and household livelihood strategies in rural Africa: concepts, dynamics and policy implications. Food Policy, 26(4), 315–331.

    Article  Google Scholar 

  • Beneke, R. R., & Winterboer, R. (1973). Linear programming applications to agriculture. Ames Iowa: Iowa State University Press.

    Google Scholar 

  • Blank, S. C. (1990). Returns to limited crop diversification. Western Journal of Agricultural Economics, 15, 204–212.

    Google Scholar 

  • Blank, S. C., Carter, C. A., & McDonald, J. (1997). Is the market failing agricultural producers who wish to manage risks? Contemporary Economic Policy, 15, 103–112.

    Article  Google Scholar 

  • Blank, S. C. (2001). Producers get squeezed up the farming food chain: a theory of crop portfolio composition and land use. Review of Agricultural Economics, 23, 404–422.

    Article  Google Scholar 

  • Castellazzi, M. S., Wood, G. A., Burgess, P. J., Morris, J., Conrad, K. F., & Perry, J. N. (2008). A systematic representation of crop rotations. Agricultural Systems, 97(1–2), 26–33.

    Article  Google Scholar 

  • Collender, R. N. (1989). Estimation risk in farm planning under uncertainty. American Journal of Agricultural Economics, 71, 996–1002.

    Article  Google Scholar 

  • Collins, R., & Barry, P. (1986). Risk analysis with single-index portfolio models: an application to farm planning. American Journal of Agricultural Economics, 68, 152–161.

    Article  Google Scholar 

  • Detlefsen, N. K., & Jensen, A. L. (2007). Modelling optimal crop sequences using network flows. Agricultural Systems, 94(2), 566–572.

    Article  Google Scholar 

  • Dogliotti, S., Rossing, W. A. H., & Van Ittersum, M. K. (2003). ROTAT, a tool for systematically generating crop rotations. European Journal of Agronomy, 19(2), 239–250.

    Article  Google Scholar 

  • Ellis, F. (1998). Household strategies and rural livelihood diversification. Journal of Development Studies, 35(1), 1–38.

    Article  Google Scholar 

  • Ellis, F. (2000). Rural livelihoods and diversity in developing countries. Oxford: Oxford University Press.

    Google Scholar 

  • El-Nazer, T., & McCarl, B. A. (1986). The choice of crop rotation: a modeling approach and case study. American Journal of Agricultural Economics, 68(1), 127–136.

    Article  Google Scholar 

  • Fafchamps, M. (1992). Cash crop production, food price volatility, and rural market integration in the Third World. American Journal of Agricultural Economics, 74(1), 90–99.

    Article  Google Scholar 

  • Figge, F. (2004). Bio-folio: applying portfolio theory to biodiversity. Biodiversity and Conservation, 13, 827–849.

    Article  Google Scholar 

  • Freund, R. J. (1956). The introduction of risk into a programming model. Econometrica, 24, 253–263.

    Article  Google Scholar 

  • Goland, C. (1993). Agricultural risk management through diversity: field scattering in Cuyo, Peru. Culture & Agriculture, 45/46, 8–13.

    Article  Google Scholar 

  • Haneveld, W. K., & Stegeman, A. W. (2005). Crop succession requirements in agricultural production planning. European Journal of Operations Research, 166(2), 406–429.

    Article  Google Scholar 

  • Hardaker, J. B., Huirne, R. B. M., Anderson, J. R., & Lien, G. (2004). Coping with Risk in Agriculture (2nd ed.). Oxfordshire: CABI Publishing.

    Book  Google Scholar 

  • Hazell, P. B. R. (1971). A linear alternative to quadratic and semivariance programming for farm planning under uncertainty. American Journal of Agricultural Economics, 53, 53–62.

    Article  Google Scholar 

  • Hazell, P. B. R., & Norton, R. D. (1986). Mathematical Programming for Economic Analysis in Agriculture. New York: Macmillan.

    Google Scholar 

  • Heady, Earl O. (1954). Simplified presentation and logical aspects of linear programming technique. Journal of Farm Economics, 36(5), 1035–1048.

    Article  Google Scholar 

  • Hoanh, C. T., Lai, N. X., Hoa, V. T. K., et al. (2000). Can Tho Province case study: land use planning under the economic reform. In R. P. Roetter, H. Van Keulen, A. G. Laborte, H. H. Hoanh, & C. T. Van Laar (Eds.), SysNet Research Paper Series: No. 3. Synthesis of methodology development and case studies (pp. 47–52).

    Google Scholar 

  • Johnson, S., Adams, R., & Perry, G. (1991). The on-farm costs of reducing groundwater pollution. American Journal of Agricultural Economics, 73, 1063–1073.

    Article  Google Scholar 

  • Lazimy, R. (1982). Mixed-integer quadratic programming. Mathematical Programming, 23(1), 332–349.

    Article  Google Scholar 

  • Lewandrowski, J. K., & Brazee, R. J. (1993). Farm programs and climate change. Climatic Change, 23(1), 1–20.

    Article  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Mimouni, M., Zekri, S., & Flichman, G. (2000). Modelling the trade-offs between farm income and the reduction of erosion and nitrate pollution. Annals of Operation Research, 94(1–4), 91–103.

    Article  Google Scholar 

  • Nartea, G., & Bany, P. J. (1994). Risk efficiency and cost effects of geographic diversification. Review of Agricultural Economics, 16(3), 341–351.

    Article  Google Scholar 

  • Newbery, D. M. G., & Stiglitz, J. E. (1981). The theory of commodity price stabilization: a study in the economics of risk. Oxford: Clarendon Press.

    Google Scholar 

  • Nidumolu, U. B., van Keulen, H., Lubbers, M., & Mapfumo, A. (2007). Combining multiple goal linear programming and inter-stakeholder communication matrix to generate land use planning options. Environmental Modelling & Software, 22, 73–83.

    Article  Google Scholar 

  • Park, T. A., & Florkowski, W. J. (2003). Selection of peach varieties and the role of quality attributes. Journal of Agricultural and Resource Economics, 28(1), 138–151.

    Google Scholar 

  • Qiu, Z., Prato, T., & McCamley, F. (2001). Evaluating environmental risks using safety-first constraints. American Journal of Agricultural Economics, 83(2), 402–413.

    Article  Google Scholar 

  • Rădulescu, M., Rădulescu, S., & Rădulescu, C. Z. (2006). Mathematical models for optimal asset allocation. Bucureşti: Editura Academiei Române (in Romanian)

    Google Scholar 

  • Rădulescu, M., Rădulescu, S., & Rădulescu, C. Z. (2009). Sustainable production technologies which take into account environmental constraints. European Journal of Operational Research, 193, 730–740.

    Article  Google Scholar 

  • Rădulescu, M., Rădulescu, C. Z., Turek Rahoveanu, M., & Zbăganu, Gh. (2010). A portfolio theory approach to fishery management. Studies in Informatics and Control, 19(3), 285–294.

    Google Scholar 

  • Rafsnider, G. T., Driouchi, A., Tew, Bernard V., & Reid, D. W. (1993). Theory and application of risk analysis in an agricultural development setting: a Moroccan case study. European Review of Agricultural Economics, 20, 471–489.

    Article  Google Scholar 

  • Reeves, L. H., & Lilieholm, R. J. (1993). Reducing financial risk in agroforestry planning: a case study in Costa Rica. Agroforestry Systems, 21, 169–175.

    Article  Google Scholar 

  • Roche, M. J., & McQuinn, K. (2004). Riskier product portfolio under decoupled payments. European Review of Agricultural Economics, 31(2), 111–123.

    Article  Google Scholar 

  • Romero, C. (1976). Una aplicación del modelo de Markowitz a la selección de planes de variedades de manzanos en la provincia de Lérida. Revista de Estudios Agro-sociales, 97, 61–79.

    Google Scholar 

  • Romero, C., & Rehman, T. (2003). Developments in Agricultural Economics: Vol. 11. Multiple criteria analysis for agricultural decisions (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Romero, C. (2000). Risk programming for agricultural resource allocation: a multidimensional risk approach. Annals of Operation Research, 94, 57–68.

    Article  Google Scholar 

  • Santos, L. M. R., Michelon, P., Arenales, M. N., & Santos, R. H. S. (2008). Crop rotation scheduling with adjacency constraints. Annals of Operation Research. doi:10.1007/s10479-008-0478-z. Online First™.

    Google Scholar 

  • Schaefer, K. C. (1992). A portfolio model for evaluating risk in economic development projects, with an application to agriculture in Niger. Journal of Agricultural Economics, 43, 412–423.

    Article  Google Scholar 

  • Teague, M. L., Bernardo, D. J., & Mapp, H. P. (1995). Farm-level economic analysis incorporating stochastic environmental risk assessment. American Journal of Agricultural Economics, 77(1), 8–19.

    Article  Google Scholar 

  • Turvey, C. G., Driver, H. C., & Baker, T. G. (1988). Systematic and nonsystematic risk in farm portfolio selection. American Journal of Agricultural Economics, 70(4), 831–836.

    Article  Google Scholar 

  • Tziligakis, C. N. (1999). Relaxation and exact algorithms for solving mixed integer-quadratic optimization problems. Thesis (S.M.), Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center.

  • Vizvári, B., Lakner, Z., Csizmadia, Z., & Kovács, G. (2009). A stochastic programming and simulation based analysis of the structure of production on the arable land. Annals of Operation Research. doi:10.1007/s10479-009-0635-z.

    Google Scholar 

  • Weintraub, A., Romero, C., Bjørndal, T., & Epstein, R. (Eds.) (2007). International Series in Operations Research & Management Science: Vol. 99. Handbook of Operations Research in Natural Resources. Berlin: Springer.

    Google Scholar 

  • Weintraub, A., Romero, C., Bjørndal, T., & Lane, D. (2001). Operational research models and the management of renewable natural resources: a review. Bergen Open Research Archive, Institute for Research in Economics and Business Administration (SNF), Working Paper 11/2001. http://bora.nhh.no/handle/2330/1371.

  • Wossink, G. A., de Koeijer, T. J., & Renkema, J. A. (1992). Environmental-economic policy assessment: a farm economic approach. Agricultural Systems, 39, 421–438.

    Article  Google Scholar 

  • Zekri, S., & Herruzo, A. C. (1994). Complementary instruments to EEC nitrogen policy in non-sensitive areas: a case study in southern Spain. Agricultural Systems, 46, 245–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rădulescu, M., Rădulescu, C.Z. & Zbăganu, G. A portfolio theory approach to crop planning under environmental constraints. Ann Oper Res 219, 243–264 (2014). https://doi.org/10.1007/s10479-011-0902-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0902-7

Keywords

Navigation