[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Strong bounds with cut and column generation for class-teacher timetabling

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This work presents an integer programming formulation for a variant of the Class-Teacher Timetabling problem, which considers the satisfaction of teacher preferences and also the proper distribution of lessons throughout the week. The formulation contains a very large number of variables and is enhanced by cuts. Therefore, a cut and column generation algorithm to solve its linear relaxation is provided. The lower bounds obtained are very good, allowing us to prove the optimality of previously known solutions in three formerly open instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, D. (1991). Constructing school timetables using simulated annealing: sequential and parallel algorithms. Management Science, 37, 98–113.

    Article  Google Scholar 

  • Abramson, D., & Abela, J. (1992). A parallel genetic algorithm for solving the school timetabling problem. In Proceedings of the 15th Australian computer science conference.

  • Alvarez-Valdés, R., Martin, G., & Tamarit, M. (1996). Constructing good solutions for the Spanish school timetabling problem. Journal of the Operational Research Society, 47, 1203–1215.

    Google Scholar 

  • Avella, P., Boccia, M., & Vasilyev, I. (2008). A computational study of exact knapsack separation for the generalized assignment problem. Computational Optimization and Applications.

  • Avella, P., Boccia, M., & Vasilyev, I. (2009). Computational experience with general cutting planes for the set covering problem. Operations Research Letters, 37, 1.

    Article  Google Scholar 

  • Avella, P., & Vasil’ev, I. (2005). A computational study of a cutting plane algorithm for university course timetabling. Journal of Scheduling, 8, 497–514.

    Article  Google Scholar 

  • Balas, E. (1975). Facets of the knapsack polytope. Mathematical Programming.

  • Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: column generation for solving huge integer programs. Operations Research, 46, 316–329.

    Article  Google Scholar 

  • Boyd, E. A. (1992). Fenchel cutting planes for integer programming. Operations Research, 42, 53–64.

    Article  Google Scholar 

  • Boyd, E. A. (1994). Solving 0/1 integer programs with enumeration cutting planes. Annals of Operations Research, 50, 61–72.

    Article  Google Scholar 

  • Caldeira, J., & Agostinho, C. (1997). School timetabling using genetic search. In Practice and theory of automated timetabling. Toronto.

  • Colorni, A., Dorigo, M., & Maniezzo, V. (1998). Metaheuristics for high-school timetabling. Computational Optimization and Applications, 9(3), 277–298.

    Article  Google Scholar 

  • Costa, D. (1994). A tabu search algorithm for computing an operational timetable. European Journal of Operational Research, 76, 98–110.

    Article  Google Scholar 

  • Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research.

  • Daskalaki, S. (2004). An integer programming formulation for a case study in university timetabling. European Journal of Operational Research, 153, 117–135.

    Article  Google Scholar 

  • Di Stefano, C., & Tettamanzi, A. (2001). An evolutionary algorithm for solving the school time-tabling problem. In E. Boers et al. (Eds.), Applications of evolutionary computing. EvoWorkshops 2001 (pp. 452–462).

  • Drexl, A., & Salewski, F. (1997). Distribution requirements and compactness constraints in school timetabling. European Journal of Operational Research, 102(1), 193–214.

    Article  Google Scholar 

  • Eiselt, H. A., & Laporte, G. (1987). Combinatorial optimization problems with soft and hard requirements. Journal of the Operational Research Society, 38(9), 785–795.

    Google Scholar 

  • Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetable and multicommodity flow problems. SIAM Journal of Computing, 5(4), 691–703.

    Article  Google Scholar 

  • Gotlieb, C. C. (1963). The construction of class-teacher timetables. In Proceeding IFIP congress 1962 (pp. 73–77). Amsterdam.

  • Hammer, P. L., Johnson, E. L., & Peled, U. N. (1975). Facets of regular 0-1 polytopes. Mathematical Programming, 8, 179–206.

    Article  Google Scholar 

  • Hertz, A. (1991). Tabu search for large scale timetabling problems. European Journal or Operational Research, 54, 39–47.

    Article  Google Scholar 

  • Ilog, S. A. (2006). ILOG CPLEX 10.0 user’s manual.

  • Mata, S. S. (1989). O problema do horário na escola do segundo grau: Modelagem e implementação. Master’s dissertation, Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ.

  • Papoutsis, K., Valouxis, C., & Housos, E. (2003). A column generation approach for the timetabling problem of Greek high schools. Journal of the Operational Research Society, 54, 230–238.

    Article  Google Scholar 

  • Post, G., Ahmadi, S., Daskalaki, S., Kingston, J., Kyngas, J., Nurmi, K., Ranson, D., & Ruizenaar, H. (2008). An XML format for benchmarks in high school timetabling. In The 7th international conference for the practice and theory of automated timetabling.

  • Santos, H. G., Ochi, L. S., & Souza, M. J. F. (2005). A tabu search heuristic with efficient diversification strategies for the class/teacher timetabling problem. Journal of Experimental Algorithmics, 10.

  • Santos, H. G., Ochi, L. S., & Uchoa, E. (2006). Combining metaheuristics and integer programming on school timetabling problems (abstract). In Proceedings of the 19th international symposium on mathematical programming.

  • Schaerf, A. (1999). Local search techniques for large high school timetabling problems. IEEE Transactions on Systems, Man and Cybernetics Part A: Systems and Humans, 29(4), 368–377.

    Article  Google Scholar 

  • Souza, M. J. F. (2000). Programação de Horários em Escolas: Uma Aproximação por Metaheurísticas. PhD thesis, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro - COPPE/UFRJ, Rio de Janeiro, Brasil.

  • Souza, M. J. F., Ochi, L. S., & Maculan, N. (2004). Metaheuristics: computer decision-making, chapter A GRASP-Tabu Search Algorithm for solving School Timetabling Problems (pp. 659–672). Kluwer.

  • Wolsey, L. A. (1975). Faces for a linear inequality in 0-1 variables. Mathematical Programming.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroldo Gambini Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, H.G., Uchoa, E., Ochi, L.S. et al. Strong bounds with cut and column generation for class-teacher timetabling. Ann Oper Res 194, 399–412 (2012). https://doi.org/10.1007/s10479-010-0709-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0709-y

Keywords

Navigation