[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal production control of a failure-prone machine

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider a problem of optimal production control of a single unreliable machine. The objective is to minimize a discounted convex inventory/backlog cost over an infinite horizon. Using the variational analysis methodology, we develop the necessary conditions of optimality in terms of the co-state dynamics. We show that an inventory-threshold control policy is optimal when the work and repair times are exponentially distributed, and demonstrate how to find the value of the threshold in this case. We consider also a class of distributions concentrated on finite intervals and prove properties of the optimal trajectories, as well as properties of an optimal inventory threshold that is time dependent in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akella, R., & Kumar, P. R. (1986). Optimal control of production rate in a failure-prone manufacturing system. IEEE Transactions on Automatic Control, 31, 116–126.

    Article  Google Scholar 

  • Bielecki, T. R., & Kumar, P. R. (1988). Optimality of zero-inventory policies for unreliable manufacturing systems. Operations Research, 36, 532–541.

    Article  Google Scholar 

  • Gershwin, S. B. (1994). Manufacturing systems engineering. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • El-Ferik, S., Malhame, R. P., & Boukas, E. K. (1998). A tractable class of maximal hedging policies in multi-part manufacturing systems. Discrete Event Dynamic Systems, 8, 299–331.

    Article  Google Scholar 

  • Feng, Y., & Yan, H. (2000). Optimal production control in a discrete manufacturing system with unreliable machines and random demands. IEEE Transactions on Automatic Control, 45, 2280–2296.

    Article  Google Scholar 

  • Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic optimal control. Berlin: Springer.

    Google Scholar 

  • Hartl, R. F., Sethi, S. P., & Vickson, R. G. (1995). A survey of the maximum principles for optimal control problems with state constraints. SIAM Review, 37, 181–218.

    Article  Google Scholar 

  • Hu, J. Q., & Xiang, D. (1995a). Monotonicity of optimal flow control for failure-prone production systems. Journal of Optimization Theory and Applications, 86, 57–71.

    Article  Google Scholar 

  • Hu, J. Q., & Xiang, D. (1995b). Optimal control for systems with deterministic production cycles. IEEE Transactions on Automatic Control, 40, 782–786.

    Article  Google Scholar 

  • Kabanov, Yu. M. (1997). On the Pontryagin maximum principle for SDEs with Poisson type disturbances. In Stochastic and control of random processes. Proceedings of Steclov Mathematical Institute seminar. The Liptser festschrift (pp. 173–190). Singapore: World Scientific.

    Google Scholar 

  • Maimon, O., Khmelnitsky, E., & Kogan, K. (1998). Optimal flow control in manufacturing systems: production planning and scheduling. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Martinelli, F., & Valigi, P. (2004). Hedging point policies remain optimal under limited backlog and inventory space. IEEE Transactions on Automatic Control, 49(10), 1863–1869.

    Article  Google Scholar 

  • Perkins, J., & Srikant, R. (2001). Failure-prone production systems with uncertain demand. IEEE Transactions on Automatic Control, 46(3), 441–449.

    Article  Google Scholar 

  • Presman, E., Sethi, S., & Zhang, Q. (1995). Optimal feedback production planning in a stochastic N-machine flowshop. Automatica, 31(9), 1325–1332.

    Article  Google Scholar 

  • Sethi, S. P., & Thompson, G. L. (2000). Optimal control theory: applications to management science (2nd ed.). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Sethi, S. P., Yan, H., Zhang, H., & Zhang, Q. (2002). Optimal and hierarchical controls in dynamic stochastic manufacturing systems: a survey. Manufacturing and Service Operations Management, 4(2), 133–170.

    Article  Google Scholar 

  • Yong, J., & Zhou, X. Y. (1999). Stochastic controls: Hamiltonian systems and HJB equations. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh P. Sethi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khmelnitsky, E., Presman, E. & Sethi, S.P. Optimal production control of a failure-prone machine. Ann Oper Res 182, 67–86 (2011). https://doi.org/10.1007/s10479-009-0668-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0668-3

Keywords

Navigation