[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Metaheuristics in Combinatorial Optimization

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The emergence of metaheuristics for solving difficult combinatorial optimization problems is one of the most notable achievements of the last two decades in operations research. This paper provides an account of the most recent developments in the field and identifies some common issues and trends. Examples of applications are also reported for vehicle routing and scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, E.H.L., J.H.M. Korst, and P.J.M. van Laarhoven. (1997). “Simulated Annealing.” In E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization Chichester: Wiley, pp. 91–136.

    Google Scholar 

  • Aarts, E.H.L. and J.K. Lenstra. (eds.) (1997). Local Search in Combinatorial Optimization. Chichester: Wiley.

    Google Scholar 

  • Aarts, E.H.L. and H.M.M. Ten Eikelder. (2002). “Simulated Annealing.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization. New York: Oxford University Press, pp. 209–220.

    Google Scholar 

  • Aarts, E.H.L. and M.G.A. Verhoeven. (1997). “Genetic Local Search for the Traveling Salesman Problem.” In T. Bäck, D.B. Fogel, Z. Michalewicz (eds.), Handbook of Evoluationary Computation, G9.5, New York: Oxford University Press.

    Google Scholar 

  • Ahuja, R.K., O. Ergun, J.B. Orlin, and A.P. Punnen. (2002). “A Survey of Very Large-Scale Neighborhood Search Techniques.” Discrete Applied Mathematics 123, 75–102.

    Article  Google Scholar 

  • Azencott, R. (ed.) (1992). Simulated Annealing: Parallelization Techniques. Chichester: Wiley.

    Google Scholar 

  • Battiti, R. and G. Tecchiolli. (1994). “The Reactive Tabu Search.” ORSA Journal on Computing 6, 126–140.

    Google Scholar 

  • Beasley, J.E. (2002). “Population Heuristics.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization. New York: Oxford University Press, pp. 138–156.

    Google Scholar 

  • Bent, R. and P. Van Hentenryck. (2004). “A Two-Stage Hybrid Local Local Search for the Vehicle Routing Problem with Time Windows.” Transportation Science 38, 515–530.

    Article  Google Scholar 

  • Benyahia, I. and J.-Y. Potvin. (1998). “Decision Support for Vehicle Dispatching using Genetic Programming.” IEEE Transactions on Systems, Man and Cybernetics 28, 306–314.

    Article  Google Scholar 

  • Bräysy, O. (2001). “Local Search and Variable Neighborhood Search Algorithms for the Vehicle Routing Problem with Time Windows.” Doctoral Dissertation, University of Vaasa, Finland.

  • Bräysy, O., M. Gendreau, and W. Dullaert. (2004). “Evolutionay Algorithms for the Vehicle Routing Problem with Time Windows.” Journal of Heuristics 10, 587–611.

    Article  Google Scholar 

  • Bräysy, O. and M. Gendreau. (2002). “Tabu Search Heuristics for the Vehicle Routing Problem with Time Windows.” TOP 10, 211–238.

    Google Scholar 

  • Bräysy, O. and M. Gendreau. (2005). “Vehicle Routing Problem with Time Windows, Part II: Metaheuristics.” Transportation Science 39, 119–139.

    Article  Google Scholar 

  • Bullnheimer, B., R.F. Hartl, and C. Strauss. (1999). “Applying the Ant System to the Vehicle Routing Problem.” In S. Voss, S. Martello, I.H. Osman, and C. Roucairol (eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Boston: Kluwer, pp. 285–296.

    Google Scholar 

  • Bullnheimer, B., R.F. Hartl, and C. Strauss. (1999). “An Improved Ant System for the Vehicle Routing Problem.” Annals of Operations Research 89, 319–328.

    Article  Google Scholar 

  • Burke, E.K., P. Cowling, and R. Keuthen. (2001). “Effective Local and Guided Variable Neighborhood Search Methods for the Asymmetric Traveling Salesman Problem.” Lecture Notes in Computer Science 2037, 203–212.

    Article  Google Scholar 

  • Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms. Boston: Kluwer.

    Google Scholar 

  • Carreto, C. and B. Baker. (2001). “A GRASP Interactive Approach to the Vehicle Routing Problem with Backhauls.” In C.C. Ribeiro, P. Hansen (eds.), Essays and Surveys in Metaheuristics. Boston: Kluwer, pp. 185–200.

    Google Scholar 

  • Cerny, V. (1985). “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm.” Journal of Optimization Theory and Applications 45, 41–51.

    Article  Google Scholar 

  • Chardaire, P., J.L. Lutton, and A. Sutter. (1995). “Thermostatistical persistency: A Powerful Improving Concept for Simulated Annealing Algorithms.” European Journal of Operational Research 86, 565–579.

    Article  Google Scholar 

  • Congram, R.K., C.N. Potts, and S.L. van der Velde. (2002). “An Iterated Dynasearch Algorithm for the Single Machine Total Weighted Tardiness Scheduling Problem.” INFORMS Journal on Computing 14, 52–67.

    Article  Google Scholar 

  • Cordeau, J.-F., M. Gendreau, G. Laporte, J.-Y. Potvin, and F. Semet. (2002). “A Guide to Vehicle Routing Heuristics.” Journal of the Operational Research Society 53, 512–522.

    Article  Google Scholar 

  • Cordeau, J.-F., G. Laporte, and A. Mercier. (2001). “A Unified Tabu Search Heuristic for Vehicle Routing Problems with Time Windows.” Journal of the Operational Research Society 52, 928–936.

    Article  Google Scholar 

  • Cordeau, J.-F. and G. Laporte. (2003). “A Tabu Search Heuristic for the Static Multi-Vehicle Dial-a-Ride Problem.” Transportation Research B37, 579–594.

    Google Scholar 

  • Cordeau, J.-F. and G. Laporte. (2004). “Tabu Search Heuristics for the Vehicle Routing Problem.” In C. Rego and B. Alidaee (eds.), Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search. Boston: Kluwer, pp. 145–163.

    Google Scholar 

  • Cordone, R. and R.W. Calvo. (2001). “A Heuristic for the Vehicle Routing Problem with Time Windows.” Journal of Heuristics 7, 107–129.

    Article  Google Scholar 

  • Corne, D., M. Dorigo, and F. Glover. (eds.) (1999). New Ideas in Optimization, London: McGraw-Hill.

    Google Scholar 

  • Crainic, T.G. and M. Gendreau. (1999). “Towards an Evolutionary Method—Cooperative Multi-Thread Parallel Tabu Search Heuristic Hybrid.” In S. Voss, S. Martello, I.H. Osman and C. Roucairol (eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Boston: Kluwer, pp. 331–344.

    Google Scholar 

  • Crainic, T.G., M. Gendreau, and J.M. Farvolden. (2000). “A Simplex-Based Tabu Search Method for Capacitated Network Design.” INFORMS Journal on Computing 12, 223–236.

    Article  Google Scholar 

  • Crainic, T.G., M. Gendreau, P. Hansen, N. Hoeb, and N. Mladenović. (2001). “Parallel Variable Neighborhood Search for the p-Median.” In Proceedings of MIC'2001, Porto, 595–599.

  • Crainic, T.G., M. Gendreau, P. Soriano, and M. Toulouse. (1993). “A Tabu Search Procedure for Multicommodity Location/Allocation with Balancing Requirements.” Annals of Operations Research 41, 359–383.

    Article  Google Scholar 

  • Crainic, T.G. and M. Toulouse. (2003). “Parallel Strategies for Meta-Heuristics.” In F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics. Boston: Kluwer, pp. 475–513.

    Google Scholar 

  • Crainic, T.G., M. Toulouse, and M. Gendreau. (1997). “Towards a Taxonomy of Parallel Tabu Search Algorithms.” INFORMS Journal on Computing 9, 61–72.

    Google Scholar 

  • Crispim, J. and J. Brandao. (2001). “Reactive Tabu Search and Variable Neighborhood Descent Applied to the Vehicle Routing Problem with Backhauls.” In Proceedings of MIC'2001, 931-636, Porto.

  • Cung, V.-D., S.L. Martins, C.C. Ribeiro, and C. Roucairol. (2002). “Strategies for the Parallel Implementation of Metaheuristics.” In C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Boston: Kluwer, pp. 263–308.

    Google Scholar 

  • Desaulniers, G., J. Desrosiers, A. Erdmann, M.M. Solomon, and F. Soumis. (2001). “VRP with Pickup and Delivery.” In P. Toth and D.Vigo (eds.), The Vehicle Routing Problem, Philadelphia: SIAM, pp. 225–242.

    Google Scholar 

  • Dorigo, M. (1992). “Optimization, Learning, and Natural Algorithms,” Ph.D. Thesis, Politecnico di Milano.

  • Dorigo, M. and G. Di Caro. (1999). “The Ant Colony Optimization Meta-Heuristic.” D. Corne, In M. Dorigo and F. Glover (eds.), New Ideas in Optimization, London: McGraw-Hill, pp. 11–32.

    Google Scholar 

  • Dorigo, M., G. Di Caro, and L.M. Gambardella. (1999). “Ant Algorithms for Discrete Optimization.” Artificial Life 5, 137–172.

    Article  Google Scholar 

  • Dorigo, M. and L.M. Gambardella. (1997). “Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem.” IEEE Transactions on Evolutionary Computation 1, 53–66.

    Article  Google Scholar 

  • Dorigo, M. and L.M. Gambardella. (1997). “Ant Colonies for the Traveling Salesman Problem.” BioSystems 43, 73–81.

    Article  Google Scholar 

  • Dorigo, M., V. Maniezzo, and A. Colorni. (1996). “The Ant System: Optimization by a Colony of Cooperating Agents.” IEEE Transactions on Systems, Man, and Cybernetics B26, 29–41.

    Google Scholar 

  • Dorigo, M. and T. Stützle. (2003). “The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances.” In F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics. Boston: Kluwer, pp. 251–285.

  • Dueck, G. and T. Scheuer. (1990). “Threshold Accepting: A General Purpose Optimization Algorithm.” Journal of Computational Physics 90, 161–175.

    Article  Google Scholar 

  • Duhamel, C., J.-Y. Potvin, and J.-M. Rousseau. (1997). “A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows.” Transportation Science 31, 49–59.

    Google Scholar 

  • Feo, T.A. and M.G.C. Resende. (1989). “A Probabilistic Heuristic for a Computationally Difficult Set Covering Problem.” Operations Research Letters 8, 67–71.

    Article  Google Scholar 

  • Feo, T.A. and M.G.C. Resende. (1995). “Greedy Randomized Adaptive Search Procedures.” Journal of Global Optimization 6, 109–133.

    Article  Google Scholar 

  • Festa, P. and M.C.G. Resende. (2002). “GRASP: An Annotated Bibliography.” In C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Boston: Kluwer, pp. 325–368.

  • Fleurent, C. and F. Glover. (1999). “Improved Constructive Multistart Strategies for the Quadratic Assignment Problem using Adaptive Memory.” INFORMS Journal on Computing 11, 198–204.

    Google Scholar 

  • Gambardella, L.-M., E.D. Taillard, and G. Agazzi. (1999). “MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows.” In D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization, London: McGraw-Hill, pp. 63–76.

  • Gambardella, L.-M., E.D. Taillard, and M. Dorigo. (1999). “Ant Colonies for the Quadratic Assignment Problem.” Journal of the Operational Research Society 50, 167–176.

    Google Scholar 

  • Gendreau, M. (2003). “An Introduction to Tabu Search.” In F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics. Boston: Kluwer, pp. 37–54.

  • Gendreau, M. (2002). “Recent Advances in Tabu Search.” In C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics, Boston: Kluwer, pp. 369–378.

  • Gendreau, M., F. Guertin, J.-Y. Potvin, and R. Séguin. (1998). “Neighborhood Search Heuristics for a Dynamic Vehicle Dispatching Problem with Pick-ups and Deliveries.” Technical Report CRT-98-10, Centre de recherche sur les transports, Université de Montréal.

  • Gendreau, M., F. Guertin, J.-Y. Potvin, and E.D. Taillard. (1999). “Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching.” Transportation Science 33, 381–390.

    Google Scholar 

  • Gendreau, M., G. Laporte, and J.-Y. Potvin. (1997). “Vehicle Routing: Modern Heuristics” E.H.L. Aarts and J.K. Lenstra (eds.), In Local Search in Combinatorial Optimization, Chichester: Wiley, pp. 311–336.

  • Gendreau, M., G. Laporte, and J.-Y. Potvin. (2002). “Metaheuristics for the Capacitated VRP” in The Vehicle Routing Problem, P. Toth and D. Vigo (eds.), Philadelphia: SIAM, pp. 129–154.

  • Gendreau, M., G. Laporte, and F. Semet. (2001). “A Dynamic Model and Parallel Tabu Search Heuristic for Real-Time Ambulance Relocation.” Parallel Computing 27, 1641–1653.

    Article  Google Scholar 

  • Gendron, B., J.-Y. Potvin, and P. Soriano. (1999). “Tabu Search with Exact Neighbor Evaluation for Multicommodity Location with Balancing Requirements.” INFOR 37, 255–270.

    Google Scholar 

  • Glover, F. (1963). “Parametric Combinations of Local Job Shop Rules.” Chapter IV, ONR Research Memorandum no. 117, GSIA, Carnegie-Mellon University, Pittsburgh, U.S.A.

  • Glover, F. (1977). “Heuristics for Integer Programming using Surrogate Constraints.” Decision Sciences 8, 156–166.

    Google Scholar 

  • Glover, F. (1986). “Future Paths for Integer Programming and Links to Artificial Intelligence.” Computers & Operations Research 13, 533–549.

    Article  Google Scholar 

  • Glover, F. (1989). “Tabu Search—Part I.” ORSA Journal on Computing 1, 190–206.

    Google Scholar 

  • Glover, F. (1990). “Tabu Search—Part II.” ORSA Journal on Computing 2, 4–32.

    Google Scholar 

  • Glover, F. (1996). “Ejection Chains, Reference Structures and Alternating Path Methods for the Traveling Salesman Problem.” Discrete Applied Mathematics 65, 223–253.

    Article  Google Scholar 

  • Glover, F. (1997). “Tabu Search and Adaptive Memory Programming—Advances, Applications and Challenges.” In R.S. Barr, R.V. Helgason and J.L. Kennington (eds.), Advances in Metaheuristics, Optimization and Stochastic Modeling Technologies. Boston: Kluwer, pp. 1–75.

  • Glover, F. and G.A. Kochenberger. (eds.) (2003). Handbook of Metaheuristics, Boston: Kluwer.

  • Glover, F. and M. Laguna. (1997). Tabu Search. Boston: Kluwer.

  • Glover, F. and M. Laguna. (2002). “Tabu Search.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization, New York: Oxford University Press, pp. 194–208.

    Google Scholar 

  • Glover, F., M. Laguna, and R. Marti. (2000). “Fundamentals of Scatter Search and Path Relinking.” Control and Cybernetics 39, 653–684.

    Google Scholar 

  • Glover, F., M. Laguna, E.D. Taillard, and D. de Werra. (eds.) (1993). Tabu Search, Annals of Operations 41.

  • Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning, Reading: Addison-Wesley.

  • Hansen, P., B. Jaumard, N. Mladenović, and A. Parreira. (2000). “Variable Neighborhood Search for Weighted Maximum Satisfiability Problem.” Les Cahiers du GERAD, G-2000-62, Montréal.

  • Hansen, P. and N. Mladenović. (1999). “An Introduction to Variable Neighborhood Search.” In S. Voss, S. Martello, I.H. Osman and C. Roucairol (eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Boston: Kluwer, pp. 433–458.

    Google Scholar 

  • Hansen, P. and N. Mladenović. (2003). “Variable Neighborhood Search.” In F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics. Boston: Kluwer, pp. 145–184.

    Google Scholar 

  • Hansen, P. and N. Mladenović. (2001). “Variable Neighborhood Search: Principles and Applications.” European Journal of Operational Research 130, 449–467.

    Article  Google Scholar 

  • Hansen, P. and N. Mladenović. (2002). “Developments of Variable Neighborhood Search.” In C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Boston: Kluwer, pp. 415–440.

    Google Scholar 

  • Hansen, P. and N. Mladenović. (2000). “Variable Neighborhood Search.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization. New York: Oxford University Press, pp. 221–234.

    Google Scholar 

  • Hansen, P., N. Mladenović, and D. Perez-Brito. (2001). “Variable Neighborhood Decomposition Search.” Journal of Heuristics 7, 335–350.

    Article  Google Scholar 

  • Hart, J.P. and A.W. Shogan. (1987). “Semi-Greedy Heuristics: An Empirical Study.” Operations Research Letters 6, 107–114.

    Article  Google Scholar 

  • Henderson, D., S.H. Jacobson, and A.W. Johnson. (2003). “The Theory and Practice of Simulated Annealing.” In F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics. Boston: Kluwer, pp. 287–319.

    Google Scholar 

  • Hjorring, C.A. (1995). “The Vehicle Routing Problem and Local Search Metaheuristics.” Ph.D. Thesis, University of Auckland.

  • Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, The University of Michigan Press.

  • Johnson, D.S. and L.A. McGeoch. (1997). “The Traveling Salesman Problem: A Case Study.” In E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization, Chichester: Wiley, pp. 215–310.

    Google Scholar 

  • Kirkpatrick, S., C.D. Gelatt Jr., and M.P. Vecchi. (1983). “Optimization by Simulated Annealing.” Science 220, 671–680.

    Google Scholar 

  • Kontoravdis, G. and J.F. Bard. (1995). “A GRASP for the Vehicle Routing Problem with Time Windows.” ORSA Journal on Computing 7, 10–23.

    Google Scholar 

  • Koulamas, C., S.R. Antony, and R. Jaen. (1994). “A Survey of Simulated Annealing Applications to Operations Research Problems.” Omega 22, 41–56.

    Article  Google Scholar 

  • Laguna, M. (2002). “Scatter Search.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization. New York: Oxford University Press, pp. 183–193.

    Google Scholar 

  • Laguna, M. and R. Martí. (1999). “GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization.” INFORMS Journal on Computing 11, 44–52.

    Google Scholar 

  • Land, M. (1998). “Evolutionary Algorithms with Local Search for Combinatorial Optimization.” Ph.D. Dissertation, University of California, San Diego.

  • Laporte, G. and I.H. Osman. (eds.) (1996). “Metaheuristics in Combinatorial Optimization.” Annals of Operations Research 63.

  • LeBouthillier, A., T.G. Crainic, and R. Keller. (2000). “Parallel Cooperative Evolutionary Algorithm for Vehicle Routing Problems with Time Windows.” In Proceedings of Odysseus 2000, Chania, pp. 78–81.

  • Leclerc, F. and J.-Y. Potvin. (1997). “Genetic Algorithms for Vehicle Dispatching.” International Transactions in Operational Research 4, 391–400.

    Article  Google Scholar 

  • Lelouarn, F.-X., M. Gendreau, and J.-Y. Potvin. (2004). “GENI Ants for the Traveling Salesman Problem.” Annals of Operations Research 131, 187–201.

    Article  Google Scholar 

  • Lokketangen, A. (2002). “Heuristics for 0-1 Mixed Integer Programming.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization, New York: Oxford University Press, pp. 474–477.

    Google Scholar 

  • Lokketangen, A. and F. Glover. (1998). “Solving Zero-One Mixed Integer Programming Problems using Tabu Search.” European Journal of Operational Research 106, 624–658.

    Article  Google Scholar 

  • Lokketangen, A. and F. Glover. (1999). “Candidate List and Exploration Strategies for Solving 0/1 MIP Problems using a Pivot Neighborhood.” In S. Voss, S. Martello, I.H. Osman, C. Roucairol (eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Boston: Kluwer, pp. 141–154.

    Google Scholar 

  • Lorenço, H.R., O. Martin, and T. Stützle. (2003). “Iterated Local Search.” In F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics. Boston: Kluwer, pp. 321–353.

    Google Scholar 

  • Maniezzo, V. and A. Carbonaro. (2002). “Ant Colony Optimization: An Overview.” In C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics, Boston: Kluwer, pp. 469–492.

    Google Scholar 

  • Martins, S.L., M.G.C. Resende, C.C. Ribeiro and P. Pardalos. (2000). “A Parallel GRASP for the Steiner Tree Problem in Graphs using a Hybrid Local Search Strategy.” Journal of Global Optimization 17, 267–283.

    Article  Google Scholar 

  • Michalewicz, Z. (1996). Genetic Algorithms + Data Structures − Evolution Programs. Third Edition, Berlin: Springer.

    Google Scholar 

  • Middendorf, M., F. Reischle, and H. Schmeck. (2002). “Multi Colony Ant Algorithms.” Journal of Heuristics 8, 305–320.

    Article  Google Scholar 

  • Mladenović, N. and P. Hansen. (1997). “Variable Neighborhood Search.” Computers & Operations Research 24, 1097–1100.

    Article  Google Scholar 

  • Moscato, P. (1999). “Memetic Algorithms: A short introduction.” In D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization, London: McGraw-Hill, pp. 219–234.

    Google Scholar 

  • Moscato, P. (2002). “Memetic Algorithms.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization, New York: Oxford University Press, pp. 157–167.

    Google Scholar 

  • Mühlenbein, H. (1992). “How Genetic Algorithms Really Work: Mutation and Hill-Climbing.” In R. Männer and B. Manderick (eds.), Parallel Problem Solving from Nature 2. North-Holland, Amsterdam, pp. 15–26.

  • Mühlenbein, H. (1997). “Genetic Algorithms.” In Local Search in Combinatorial Optimization. E.H.L. Aarts and J.K. Lenstra (eds.), Chichester: Wiley, pp. 137–171.

  • Osman, I.H. (1993). “Metastrategy Simulated Annealing and Tabu Search Algorithms for the Vehicle Routing.” Annals of Operations Research 41, 421–452.

    Article  Google Scholar 

  • Osman, I.H. and J.P. Kelly. (eds.) (1996). Meta-Heuristics: Theory & Applications. Boston: Kluwer.

    Google Scholar 

  • Osman, I.H. and G. Laporte. (1996). “Metaheuristics: A Bibliography.” Annals of Operations Research 63, 513–623.

    Article  Google Scholar 

  • Pardalos, P.M. and M.G.C. Resende. (eds.) (2002). Handbook of Applied Optimization, Chapter 3.6 on Metaheuristics. New York: Oxford University Press, pp. 123-234.

    Google Scholar 

  • Pitsoulis, L.S. and M.G.C. Resende. (2002). “Greedy Randomized Adaptive Search Procedures.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization, New York: Oxford University Press, pp. 168–182.

    Google Scholar 

  • Potvin, J.-Y. (1996). “Genetic Algorithms for the Traveling Salesman Problem.” Annals of Operations Research 63, 339–370.

    Article  Google Scholar 

  • Potvin, J.-Y., C. Duhamel, and F. Guertin. (1996). “A Genetic Algorithm for Vehicle Routing with Backhauling.” Applied Intelligence 6, 345–355.

    Article  Google Scholar 

  • Prais, M. and C.C. Ribeiro. (2000). “Reactive GRASP: An Application to a Matrix Decomposition Problem.” INFORMS Journal on Computing 12, 164–176.

    Article  Google Scholar 

  • Prais, M. and C.C. Ribeiro. (2000). “Parameter Variation in GRASP procedures.” Investigación Operativa 9, 1–20.

    Google Scholar 

  • Preux, P. and E.G. Talbi. (1999). “Towards hybrid evolutionary algorithms.” International Transactions in Operational Research 6, 557–570.

    Article  Google Scholar 

  • Rego, C. (2001). “Node Ejection Chains for the Vehicle Routing Problem: Sequential and Parallel Algorithms.” Parallel Computing 27, 201–222.

    Article  Google Scholar 

  • Rego, C. and F. Glover. (2001). “Local Search and Metaheuristics for the Traveling Salesman Problem.” Technical Report HCES-07-01, Hearin Center for Enterprise Science, The University of Mississipi.

  • Rego, C. and C. Roucairol. (1996). “A Parallel Tabu Search Algorithm Using Ejection Chains for the Vehicle Routing Problem.” In I.H. Osman and J.P. Kelly (eds.), Metaheuristics: Theory and Applications. Boston: Kluwer, pp. 661–675.

    Google Scholar 

  • Reeves, C.R. (2003). “Genetic Algorithms.” In F. Glover and G. Kochenberger (eds.), Hanbook of Metaheuristics, in Handbook of Metaheuristics. Boston: Kluwer, pp. 55–82.

  • Reeves, C.R. (ed) (1993). Modern Heuristic Techniques for Combinatorial Problems. Oxford: Blackwell.

    Google Scholar 

  • Reeves, C.R. and T. Yamada. (1998). “Genetic Algorithms, Path Relinking and the Flowshop Sequencing Problem.” Evolutionary Computation 6, 45–60.

    Google Scholar 

  • Resende, M.G.C. and C.C. Ribeiro. (2003). “Greedy Randomized Adaptive Search Procedures.” In F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics. Boston: Kluwer, pp. 219–249.

    Google Scholar 

  • Ribeiro, C.C. and P. Hansen. (eds.) (2002). Essays and Surveys in Metaheuristics. Boston: Kluwer.

    Google Scholar 

  • Rochat, Y. and E.D. Taillard. (1995). “Probabilistic Diversification and Intensification in Local Search for Vehicle Routing.” Journal of Heuristics 1, 147–167.

    Google Scholar 

  • Rousseau, L.-M., M. Gendreau, and G. Pesant. (2002). “Using Constraint-Based Operators with Variable Neighborhood Search to Solve the Vehicle Routing Problem with Time Windows” Journal of Heuristics 8, 43–58.

    Article  Google Scholar 

  • Stützle, T. and M. Dorigo. (1999). “ACO Algorithms for the Traveling Salesman Problem”, In K. Miettinen, M. Makela, P. Neittaanmaki and J. Periaux (eds.), Evolutionary Algorithms in Engineering and Computer Science, Chichester: Wiley.

  • Stützle, T. and H.H. Hoos. (1998). “Improvements on the Ant System: Introducing the MAX-MIN Ant System.” In G.D. Smith, N.C. Steele and R.F. Albrecht (eds.), Artificial Neural Networks and Genetic Algorithms. Berlin: Springer Verlag, pp. 245–249.

    Google Scholar 

  • Stützle, T. and H.H. Hoos. (2000). “MAX-MIN Ant System.” Future Generation Computer Systems Journal 16, 889–914.

    Article  Google Scholar 

  • Sun, M., J.E. Aronson, P.G. McKeown, and D. Drinka. (1998). “A Tabu Search Heuristic for the Fixed Charge Transportation Problem.” European Journal of Operational Research 106, 441–456.

    Article  Google Scholar 

  • Taillard, E.D. (2002). “Ant Systems.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Optimization, New York: Oxford University Press, pp. 130–137.

    Google Scholar 

  • Taillard, E.D., P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin. (1997). “A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows.” Transportation Science 31, 170–186.

    Article  Google Scholar 

  • Taillard, E.D., L.-M. Gambardella, M. Gendreau, and J.-Y. Potvin. (2001). “Adaptive Memory Programming: A Unified View of Metaheuristics.” European Journal of Operational Research 135, 1–16.

    Article  Google Scholar 

  • Talbi, E.G. (2002). “A Taxonomy of Hybrid Metaheuristics.” Journal of Heuristics 8, 541–564.

    Article  Google Scholar 

  • Toth, P. and D. Vigo. (1997). “Heuristic Algorithms for the Handicapped Persons Transportation Problem.” Transportation Science 31, 60–71.

    Article  Google Scholar 

  • Toth, P. and D. Vigo. (2003). “The Granular Tabu Search and Its Application to the Vehicle-Routing Problem.” INFORMS Journal on Computing 15, 333–346.

    Article  Google Scholar 

  • Verhoeven, M.G.A. and E.H.L. Aarts. (1996). “Parallel Local Search Techniques.” Journal of Heuristics 1, 43–65.

    Google Scholar 

  • Voss, S., S. Martello, I.H. Osman, and C. Roucairol. (eds.) (1999). Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Boston: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gendreau, M., Potvin, JY. Metaheuristics in Combinatorial Optimization. Ann Oper Res 140, 189–213 (2005). https://doi.org/10.1007/s10479-005-3971-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-005-3971-7

Keywords

Navigation