[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An improved generalized normal distribution optimization and its applications in numerical problems and engineering design problems

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Generalized normal distribution optimization (GNDO) inspired by the theory of normal distribution is a recently developed metaheuristic method for global optimization problems. This work presents a novel variant of GNDO, which is called elite-driven generalized normal distribution optimization (EDGNDO). EDGNDO enhances the global search ability of GNDO by the designed search mechanism consisting of three local search operators and three global search operators that are based on two built archives used to save elite individuals. Note that, EDGNDO only needs population size and termination criteria for optimization, which can distinguish it over the most reported metaheuristic methods. The performance of EDGNDO is investigated by the well-known CEC 2017 test suite including three unimodal functions and 27 multimodal functions. Experimental results demenstrate that EDGNDO is obviously better than GNDO and the other five powerful algorithms in terms of solution quality and computational efficiency. In addition, EDGNDO is also used for solving four challenging constrained engineering design problems. Experimental results support the superiority of EDGNDO in solving the four problems. The superiority of EDGNDO in solving complex optimization problems is proven. The source code can be loaded from https://github.com/jsuzyy/EDGNDO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Acknowledgements

This work is supported by the Research Foundation for Talented Scholars of Jiangsu University, China (Grand No. 21JDG065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiying Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Tables

Table 20 The ranking results of seven algorithms based on MAX and MEAN on CEC 2017 test suite with 30-dimensional

20,

Table 21 The ranking results of seven algorithms based on MIN and STD on CEC 2017 test suite with 30-dimensional

21,

Table 22 The ranking results of seven algorithms based on MAX and MEAN on CEC 2017 test suite with 50-dimensional

22,

Table 23 The ranking results of seven algorithms based on MIN and STD on CEC 2017 test suite with 50-dimensional

23

Appendix B

2.1 Mathematical expression of pressure vessel design problem

$$\begin{gathered} {\text{Minimize }}f\left( {T_{s} ,T_{h} ,R,L} \right) = f\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = 0.6224x_{1} x_{3} x_{4} + 1.7781x_{2} x_{3}^{2} + 3.1661x_{1}^{2} x_{4} + 19.84x_{1}^{2} x_{3} \hfill \\ {\text{Subject to:}} \hfill \\ g_{1} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = - x_{1} + 0.0193x_{3} \le 0 \hfill \\ g_{2} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = - x_{2} + 0.00954x_{3} \le 0 \hfill \\ g_{3} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = - \pi x_{3}^{2} x_{4} - \frac{4}{3}\pi x_{3}^{3} + 1296,000 \le 0 \hfill \\ g_{4} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = x_{4} - 240 \le 0 \hfill \\ \end{gathered}$$

where \(\, 0 \le x_{i} \le 100, \, i = 1,2; \, 10 \le x_{i} \le 200, \, i = 3,4\).

2.2 Mathematical expression of welded beam design problem

$$\begin{gathered} {\text{Minimize }}f\left( {t,h,b,l} \right) = f\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = 1.10471x_{1}^{2} x_{2} + 0.04811x_{3} x_{4} \left( {14 + x_{2} } \right) \hfill \\ {\text{Subject to:}} \hfill \\ g_{1} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = \tau \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) - \tau_{\max } \le 0 \hfill \\ g_{2} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = \sigma \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) - \sigma_{\max } \le 0 \hfill \\ g_{3} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = x_{1} - x_{4} \le 0 \hfill \\ g_{4} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = 0.10471x_{1}^{2} + 0.04811x_{3} x_{4} \left( {14 + x_{2} } \right) - 5 \le 0 \hfill \\ g_{5} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = 0.125 - x_{1} \le 0 \hfill \\ g_{6} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = \delta \left( x \right) - \delta_{\max } \le 0 \hfill \\ g_{7} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right) = P - P_{c} \left( x \right) \le 0 \hfill \\ 0.1 \le x_{i} \le 2 \, \, i{ = 1,4} \hfill \\ 0.1 \le x_{i} \le 10 \, i{ = 2,3} \hfill \\ \end{gathered}$$
$$\begin{gathered} {\text{where }}\left( x \right) = \sqrt {\left( {\tau^{^{\prime}} } \right)^{2} + 2\tau^{^{\prime}} \tau^{^{\prime\prime}} \frac{{x_{2} }}{2R} + \left( {\tau^{^{\prime\prime}} } \right)^{2} } ,\tau^{^{\prime}} = \frac{P}{{\sqrt 2 x_{1} x_{2} }},\tau^{^{\prime\prime}} = \frac{MR}{J},M = P\left( {L + \frac{{x_{2} }}{2}} \right),R = \sqrt {\left( {\frac{{x_{2} }}{2}} \right)^{2} + \left( {\frac{{x_{1} + x_{3} }}{2}} \right)^{2} } , \hfill \\ J = 2\left( {\sqrt 2 x_{1} x_{2} \left( {\frac{{x_{2}^{2} }}{12} + \left( {\frac{{x_{1} + x_{3} }}{2}} \right)^{2} } \right)} \right),\sigma \left( x \right) = \frac{6PL}{{x_{4} x_{3}^{2} }},\delta \left( x \right) = \frac{{4PL^{3} }}{{Ex_{3}^{3} x_{4} }},P_{c} \left( x \right) = \frac{{4.013E\sqrt {\frac{{x_{3}^{2} x_{4}^{6} }}{36}} }}{{L^{2} }}\left( {1 - \frac{{x_{3} }}{2L}\sqrt{\frac{E}{4G}} } \right) \hfill \\ P = 6000{\text{lb}},L = 14{\text{in}},E = 30 \times 10^{6} {\text{psi}},G = 12 \times 10^{6} {\text{psi}},\tau_{\max } = 13,600{\text{psi}}, \, \sigma_{\max } = 30,000{\text{psi}},\delta_{\max } = 0.25{\text{in}} \hfill \\ \end{gathered}$$

2.3 Mathematical expression of speed reducer design problem

$$\begin{gathered} {\text{Minimize }}f\left( {b,m,z,l_{1} ,l_{2} ,d_{1} ,d_{2} } \right) = f\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = 0.7854x_{1} x_{2}^{2} \left( {3.3333x_{3}^{2} { + }14.9334x_{3} - 43.0934} \right) \hfill \\ - 1.508x_{1} \left( {x_{6}^{2} + x_{7}^{2} } \right) + 7.4777\left( {x_{6}^{3} + x_{7}^{3} } \right) + 0.7854\left( {x_{4} x_{6}^{2} + x_{5} x_{7}^{2} } \right) \hfill \\ {\text{Subject to:}} \hfill \\ g_{1} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{27}{{x_{1} x_{2}^{2} x_{3} }} - 1 \le 0 \hfill \\ g_{2} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{397.5}{{x_{1} x_{2}^{2} x_{3} }} - 1 \le 0 \hfill \\ g_{3} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{1.93x_{4}^{3} }}{{x_{2} x_{6}^{4} x_{3} }} - 1 \le 0 \hfill \\ g_{4} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{1.93x_{5}^{3} }}{{x_{2} x_{7}^{4} x_{3} }} - 1 \le 0 \hfill \\ g_{5} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{\left( {\left( {\frac{{745x_{4} }}{{x_{2} x_{3} }}} \right)^{2} + 16.9 \times 10^{6} } \right)^{1/2} }}{{110x_{6}^{3} }} - 1 \le 0 \hfill \\ g_{6} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{\left( {\left( {\frac{{745x_{5} }}{{x_{2} x_{3} }}} \right)^{2} + 157.5 \times 10^{6} } \right)^{1/2} }}{{85x_{7}^{3} }} - 1 \le 0 \hfill \\ g_{7} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{x_{2} x_{3} }}{40} - 1 \le 0 \hfill \\ g_{8} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{5x_{2} }}{{x_{1} }} - 1 \le 0 \hfill \\ g_{9} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{x_{1} }}{{12x_{2} }} - 1 \le 0 \hfill \\ g_{10} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{1.5x_{6} + 1.9}}{{x_{4} }} - 1 \le 0 \hfill \\ g_{11} \left( {x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} ,x_{7} } \right) = \frac{{1.1x_{7} + 1.9}}{{x_{5} }} - 1 \le 0 \hfill \\ \end{gathered}$$

where \(2.6 \le x_{1} \le 3.6, \, 0.7 \le x_{2} \le 0.8,17 \le x_{3} \le 28,{ 7}{\text{.3}} \le x_{4} \le 8.3,{7}{\text{.3}} \le x_{5} \le 8.3,{ 2}{\text{.9}} \le x_{6} \le 3.9,{ 5}{\text{.0}} \le x_{7} \le 5.5\).

2.4 Mathematical expression of tension/compression design problem

$$\begin{gathered} {\text{Minimize }}f\left( {x_{1} ,x_{2} ,x_{3} } \right) = \left( {x_{3} + 2} \right)x_{2} x_{1}^{2} \hfill \\ {\text{Subject to:}} \hfill \\ g_{1} \left( {x_{1} ,x_{2} ,x_{3} } \right) = 1 - \frac{{x_{2}^{3} x_{3} }}{{71,785x_{1}^{4} }} \le 0 \hfill \\ g_{2} \left( {x_{1} ,x_{2} ,x_{3} } \right) = 4x_{2}^{2} - \frac{{x_{1} x_{2} }}{{12.566\left( {x_{2} x_{1}^{3} - x_{1}^{4} } \right)}} + \frac{1}{{5108x_{1}^{2} }} - 1 \le 0 \hfill \\ g_{3} \left( {x_{1} ,x_{2} ,x_{3} } \right) = 1 - \frac{{140.45x_{1} }}{{x_{2}^{2} x_{3} }} \le 0 \hfill \\ g_{4} \left( {x_{1} ,x_{2} ,x_{3} } \right) = x_{2} + \frac{{x_{1} }}{1.5} - 1 \le 0 \hfill \\ \end{gathered}$$

where \(\, 0.05 \le x_{1} \le 2, \, 0.25 \le x_{2} \le 1.30, \, 2.00 \le x_{3} \le 15.00\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. An improved generalized normal distribution optimization and its applications in numerical problems and engineering design problems. Artif Intell Rev 56, 685–747 (2023). https://doi.org/10.1007/s10462-022-10182-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10182-9

Keywords

Navigation