Abstract
This paper intends to exploit point operator-oriented likelihood measures to constitute a likelihood-based consensus ranking model aimed at conducting multiple criteria decision making encompassing complex uncertain evaluations with Pythagorean fuzzy sets. This paper takes advantage of Pythagorean fuzzy point operators and the scalar functions of upper and lower estimations to formulate a point operator-oriented likelihood measure for preference intensity. On this basis, this paper propounds the notion of penalty weights to characterize dominated relations for acquiring the measurement of comprehensive disagreement and constituting a likelihood-based consensus ranking model. The primary contributions of this study are fourfold. Firstly, two useful point operators are initiated for upper and lower estimations towards Pythagorean membership grades. Secondly, an effective likelihood measure is exploited for determining outranking relations of Pythagorean fuzzy information. Thirdly, a pragmatic concept of penalty weights is proposed for characterizing the dominated relations among alternatives and measuring degrees of comprehensive disagreement. Fourthly, a functional likelihood-based consensus ranking model is constructed for implementing a multiple criteria evaluation with Pythagorean fuzzy uncertainty. Furthermore, a real-life application relating to a financing problem is presented to provide a justification for the practicability of the proposed methodology. This paper executes an analysis of parameters sensitivity and comparative studies for showing more theoretical insights.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Aghayi N, Tavana M (2019) A novel three-stage distance-based consensus ranking method. J Ind Eng Int 15(May):17–24. https://doi.org/10.1007/s40092-018-0268-4
Akram M, Shahzadi G (2021) Decision-making approach based on Pythagorean Dombi fuzzy soft graphs. Granular Comput 6(3):671–689. https://doi.org/10.1007/s41066-020-00224-4
Akram M, Luqman A, Alcantud JCR (2021) Risk evaluation in failure modes and effects analysis: hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information. Neural Comput Appl 33(11):5675–5703. https://doi.org/10.1007/s00521-020-05350-3
Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
Beck MP, Lin BW (1983) Some heuristics for the consensus ranking problem. Comput Oper Res 10(1):1–7. https://doi.org/10.1016/0305-0548(83)90021-7
Biswas A, Sarkar B (2019) Interval-valued Pythagorean fuzzy TODIM approach through point operator-based similarity measures for multicriteria group decision making. Kybernetes 48(3):496–519. https://doi.org/10.1108/K-12-2017-0490
Biswas A, Sarkar B (2018) Pythagorean fuzzy multicriteria group decision making through similarity measure based on point operators. Int J Intell Syst 33(8):1731–1744. https://doi.org/10.1002/int.21994
Chen T-Y (2019) A novel PROMETHEE-based method using a Pythagorean fuzzy combinative distance-based precedence approach to multiple criteria decision making. Appl Soft Comput 82(Sep.), Article ID 105560, 27 pages. https://doi.org/10.1016/j.asoc.2019.105560
Chen T-Y (2021) A likelihood-based preference ranking organization method using dual point operators for multiple criteria decision analysis in Pythagorean fuzzy uncertain contexts. Expert Syst Appl 176(Aug.), Article ID 114881, 32 pages. https://doi.org/10.1016/j.eswa.2021.114881
Chen T-Y (2018a) A mixed-choice-strategy-based consensus ranking method for multiple criteria decision analysis involving Pythagorean fuzzy information. IEEE Access 6(1):79174–79199. https://doi.org/10.1109/ACCESS.2018.2884895
Chen T-Y (2018b) A novel PROMETHEE-based outranking approach for multiple criteria decision analysis with Pythagorean fuzzy information. IEEE Access 6(1):54495–54506. https://doi.org/10.1109/ACCESS.2018.2869137
Cook WD, Kress M (1985) Ordinal ranking with intensity of preference. Manage Sci 31(1):26–32. https://doi.org/10.1287/mnsc.31.1.26
Deng X, Wang J, Wei G, Wei C (2021) Multiple attribute decision making based on Muirhead mean operators with 2-tuple linguistic Pythagorean fuzzy information. Scientia Iranica 28(4):2294–2322. https://doi.org/10.24200/SCI.2020.51045.1978
Farhadinia B (2021) Similarity-based multi-criteria decision making technique of Pythagorean fuzzy sets. Artif Intell Rev, in Press. https://doi.org/10.1007/s10462-021-10054-8
Farid HMA, Riaz M (2021) Some generalized q-rung orthopair fuzzy Einstein interactive geometric aggregation operators with improved operational laws. Int J Intell Syst 36(12):7239–7273. https://doi.org/10.1002/int.22587
Farrokhizadeh E, Seyfi-Shishavan SA, Kutlu Gündoğdu F, Donyatalab Y, Kahraman C, Seifi SH (2021) A spherical fuzzy methodology integrating maximizing deviation and TOPSIS methods. Eng Appl Artif Intell 101(May), Article ID 104212, 14 pages. https://doi.org/10.1016/j.engappai.2021.104212
Fei L, Feng Y (2021) A dynamic framework of multi-attribute decision making under Pythagorean fuzzy environment by using Dempster–Shafer theory. Eng Appl Artif Intell 101(May), Article ID 104213, 12 pages. https://doi.org/10.1016/j.engappai.2021.104213
Fei L, Feng Y, Liu L (2019) On Pythagorean fuzzy decision making using soft likelihood functions. Int J Intell Syst 34(12):3317–3335. https://doi.org/10.1002/int.22199
Garg H (2018) New exponential operational laws and their aggregation operators for interval-valued Pythagorean fuzzy multicriteria decision-making. Int J Intell Syst 33(3):653–683. https://doi.org/10.1002/int.21966
Garg, H. (2021). Sine trigonometric operational laws and its based Pythagorean fuzzy aggregation operators for group decision-making process. Artif Intell Rev 54(6):4421–4447. https://doi-org.proxy.lib.cgu.edu.tw:2443/10.1007/s10462-021-10002-6
Iampan A, García GS, Riaz M, Athar Farid HM, Chinram R (2021) Linear Diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems. J Math 2021(Jul.), Article ID 5548033, 31 pages. https://doi.org/10.1155/2021/5548033
Jan A, Khan A, Khan W, Afridi M (2021) A novel approach to MADM problems using Fermatean fuzzy Hamacher prioritized aggregation operators. Soft Comput 25(Nov.), 13897–13910. https://doi.org/10.1007/s00500-021-06308-w
Ju Y, Liang Y, Luo C, Dong P, Santibanez Gonzalez EDR, Wang A (2021) T-spherical fuzzy TODIM method for multi-criteria group decision-making problem with incomplete weight information. Soft Comput 25(Feb.):2981–3001. https://doi.org/10.1007/s00500-020-05357-x
Kutlu Gündoğdu F, Kahraman C (2019) Spherical fuzzy sets and spherical fuzzy TOPSIS method. J Intell Fuzzy Syst 36(1):337–352. https://doi.org/10.3233/JIFS-181401
Li D-F (2011) Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information. Appl Soft Comput 11(4):3402–3418. https://doi.org/10.1016/j.asoc.2011.01.011
Liang D, Darko AP, Xu Z, Zhang Y (2020) Partitioned fuzzy measure-based linear assignment method for Pythagorean fuzzy multi-criteria decision-making with a new likelihood. J Oper Res Soc 71(5):831–845. https://doi.org/10.1080/01605682.2019.1590133
Li P, Liu J, Wei C, Liu J (2021) A new EDAS method based on prospect theory for Pythagorean fuzzy set and its application in selecting investment projects for highway. Kybernetes, in Press. https://doi.org/10.1108/K-01-2021-0066
Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl 31(11):7041–7053. https://doi.org/10.1007/s00521-018-3521-2
Munir M, Mahmood T, Hussain A (2021) Algorithm for T-spherical fuzzy MADM based on associated immediate probability interactive geometric aggregation operators. Artif Intell Rev 54(Dec.):6033–6061. https://doi.org/10.1007/s10462-021-09959-1
Oztaysi B, Onar SC, Kahraman C (2021) Waste disposal location selection by using Pythagorean fuzzy REGIME method. J Intell Fuzzy Syst, in Press. https://doi.org/10.3233/JIFS-219199
Peng X, Yang Y (2016) Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int J Intell Syst 31(5):444–487. https://doi.org/10.1002/int.21790
Peng X, Yuan H (2016) Fundamental properties of Pythagorean fuzzy aggregation operators. Fund Inform 147(4):415–446. https://doi.org/10.3233/FI-2016-1415
Peng X, Luo Z (2021) A review of q-rung orthopair fuzzy information: bibliometrics and future directions. Artif Intell Rev 54(4):3361–3430. https://doi.org/10.1007/s10462-020-09926-2
Phillips-Wren G, Mora M, Forgionne GA, Garrido L, Gupta JND (2006) A multicriteria model for the evaluation of intelligent decision-making support systems (i-DMSS). In: Intelligent decision-making support systems. Decision engineering. Springer, London. https://doi.org/10.1007/1-84628-231-4_1
Riaz M, Naeem K, Chinram R, Iampan A (2021) Pythagorean m-polar fuzzy weighted aggregation operators and algorithm for the investment strategic decision making. J Math 2021(Feb.), Article ID 6644994, 19 pages. https://doi.org/10.1155/2021/6644994
Rodriguez A (2021) A risk assessment method based on Pythagorean fuzzy set and artificial-neuron-like evaluation node. J Intell Fuzzy Syst 41(2):4097–4108. https://doi.org/10.3233/JIFS-210029
Siddique I, Zulqarnain RM, Ali R, Jarad F, Iampan, A (2021) Multicriteria decision-making approach for aggregation operators of Pythagorean fuzzy hypersoft sets. Comput Intell Neurosci 2021(Sep.), Article ID 2036506, 19 pages. https://doi.org/10.1155/2021/2036506
Sun B, Tong S, Ma W, Wang T, Jiang C (2021) An approach to MCGDM based on multi-granulation Pythagorean fuzzy rough set over two universes and its application to medical decision problem. Artif Intell Rev, in Press. https://doi.org/10.1007/s10462-021-10048-6
Tang G, Chiclana F, Liu P (2020) A decision-theoretic rough set model with q-rung orthopair fuzzy information and its application in stock investment evaluation. Appl Soft Comput 91(Jun.):1–15. Article ID 106212. https://doi.org/10.1016/j.asoc.2020.106212
Tavana M, LoPinto F, Smither JW (2007) A hybrid distance-based ideal-seeking consensus ranking model. Adv Decis Sci 2007(Aug.):1–18. Article ID 20489. https://doi.org/10.1155/2007/20489
Tavana M, LoPinto F, Smither JW (2008) Examination of the similarity between a new Sigmoid function-based consensus ranking method and four commonly-used algorithms. Int J Oper Res 3(4):384–398. https://doi.org/10.1504/IJOR.2008.019
Teng JY, Tzeng GH (1994) Multicriteria evaluation for strategies of improving and controlling air quality in the super city: a case study of Taipei city. J Environ Manage 40(3):213–229. https://doi.org/10.1006/jema.1994.1016
Tsao C-Y, Chen T-Y (2021) Pythagorean fuzzy likelihood function based on beta distributions and its based dominance ordering model in an uncertain multiple criteria decision support framework. Int J Intell Syst 36(6):2680–2729. https://doi.org/10.1002/int.22398
Wang J-C, Chen T-Y (2018) Multiple criteria decision analysis using correlation-based precedence indices within Pythagorean fuzzy uncertain environments. Int J Comput Intell Syst 11(1):911–924. https://doi.org/10.2991/ijcis.11.1.69
Wang J-C, Chen T-Y (2020) A novel Pythagorean fuzzy LINMAP-based compromising approach for multiple criteria group decision making with preference over alternatives. Int J Comput Intell Syst 13(1):444–463. https://doi.org/10.2991/ijcis.d.200408.001
Wan SP, Jin Z, Dong JY (2020) A new order relation for Pythagorean fuzzy numbers and application to multi-attribute group decision making. Knowl Inf Syst 62(2):751–785. https://doi.org/10.1007/s10115-019-01369-8
Xian S, Cheng Y (2021) Pythagorean fuzzy time series model based on Pythagorean fuzzy c-means and improved Markov weighted in the prediction of the new COVID-19 cases. Soft Comput 25(Nov.):13881–13896. https://doi.org/10.1007/s00500-021-06259-2
Xing Y, Zhang R, Zhou Z, Wang J (2019). Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making. Soft Comput 23(Jan.):11627–11649. https://doi.org/10.1007/s00500-018-03712-7
Yager RR (2013) Pythagorean fuzzy subsets [conference session]. Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting. IFSA/NAFIPS 2013, Edmonton, AB, Canada. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
Yager RR (2014) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22(4):958–965. https://doi.org/10.1109/TFUZZ.2013.2278989
Yager RR (2016) Properties and applications of Pythagorean fuzzy sets. In: Angelov P, Sotirov S (eds) Imprecision and uncertainty in information representation and Processing (pp 119–136). Studies in Fuzziness and Soft Computing, vol 332. https://doi.org/10.1007/978-3-319-26302-1_9
Yager RR, Abbasov AM (2013) Pythagorean membership grades, complex numbers, and decision making. Int J Intell Syst 28(5):436–452. https://doi.org/10.1002/int.21584
Yu W, Zhang Z, Zhong Q (2021) Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach. Ann Oper Res 300(May):443–466. https://doi.org/10.1007/s10479-019-03432-7
Zeng S, Hu Y, Xie X (2021) Q-rung orthopair fuzzy weighted induced logarithmic distance measures and their application in multiple attribute decision making. Eng Appl Artif Intell 100(Apr.), Article ID 104167, 7 pages. https://doi.org/10.1016/j.engappai.2021.104167
Zhang X, Xu Z (2014) Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int J Intell Syst 29(12):1061–1078. https://doi.org/10.1002/int.21676
Zhang Z, Gao Y, Li Z (2020) Consensus reaching for social network group decision making by considering leadership and bounded confidence. Knowl-Based Syst 207(Sep.), Article ID 106240, 12 pages. https://doi.org/10.1016/j.knosys.2020.106240
Zhang Z, Li Z, Gao Y (2021) Consensus reaching for group decision making with multi-granular unbalanced linguistic information: a bounded confidence and minimum adjustment-based approach. Inf Fusion 74(Oct.):96–110. https://doi.org/10.1016/j.inffus.2021.04.006
Zhao M, Wei G, Wei C, Wu J (2021) Pythagorean fuzzy TODIM method based on the cumulative prospect theory for MAGDM and its application on risk assessment of science and technology projects. Int J Fuzzy Syst 23(4):1027–1041. https://doi.org/10.1007/s40815-020-00986-8
Zhou F, Chen T-Y (2021) An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decision-making problems. Neural Comput Appl 33(18):11821–11844. https://doi.org/10.1007/s00521-021-05829-7
Zhu L, Liang X, Wang L, Wu X (2018) Generalized Pythagorean fuzzy point operators and their application in multi-attributes decision making. J Intell Fuzzy Syst 35(2):1407–1418. https://doi.org/10.3233/JIFS-169683
Zulqarnain RM, Xin XL, Garg H, Ali R (2021) Interaction aggregation operators to solve multi criteria decision making problem under Pythagorean fuzzy soft environment. J Intell Fuzzy Syst 41(1):1151–1171. https://doi.org/10.3233/JIFS-210098
Acknowledgements
The author acknowledges the assistance of the respected editor and the anonymous referees for their insightful and constructive comments, which helped to improve the overall quality of the paper. The author is grateful for grant funding support from the Ministry of Science and Technology, Taiwan (MOST 110-2410-H-182-005) and Chang Gung Memorial Hospital, Linkou, Taiwan (BMRP 574) during the completion of this study.
Author information
Authors and Affiliations
Contributions
T-YC Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing—original draft, Writing—review & editing, Visualization, Funding acquisition.
Corresponding author
Ethics declarations
Conflict of interest
The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Human and animal rights
This article does not contain any studies with human participants or animals that were performed by the author.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: Detailed proofs
1.1 A.1 Proof of Theorem 1
-
(T1.1) In line with Definition 7, one obtains \((\mu_{{M_{\alpha } (P)}} (x))^{2} + (\nu_{{M_{\alpha } (P)}} (x))^{2} = (\mu_{P} (x))^{2} + \alpha (\tau_{P} (x))^{2}\)\(+ (\nu_{P} (x))^{2}\). Because \((\mu_{P} (x))^{2} + (\nu_{P} (x))^{2} + (\tau_{P} (x))^{2} = 1\), it can be recognized that \(0 \le (\mu_{{M_{\alpha } (P)}} (x))^{2} +\)\((\nu_{{M_{\alpha } (P)}} (x))^{2} \le 1\). The inequality \(0 \le (\mu_{{N_{\beta } (P)}} (x))^{2} + (\nu_{{N_{\beta } (P)}} (x))^{2} \le 1\) is satisfied because \((\mu_{{N_{\beta } (P)}} (x))^{2} +\)\((\nu_{{N_{\beta } (P)}} (x))^{2} = (\mu_{P} (x))^{2} + (\nu_{P} (x))^{2} + \beta (\tau_{P} (x))^{2}\) through Definition 8. Thus, (T1.1) is correct.
-
(T1.2) It is obvious that \(\mu_{P} (x) \le \sqrt {(\mu_{P} (x))^{2} + \alpha (\tau_{P} (x))^{2} }\) from \(0 \le \alpha ,\tau_{P} (x) \le 1\); thus, \(\mu_{{N_{\beta } (P)}} (x)\)\(= \mu_{P} (x) \le \mu_{{M_{\alpha } (P)}} (x)\). Analogously, \(\nu_{{M_{\alpha } (P)}} (x) = \nu_{P} (x) \le \nu_{{N_{\beta } (P)}} (x)\) is satisfied because \(\nu_{P} (x) \le\)\(\sqrt {(\nu_{P} (x))^{2} + \beta (\tau_{P} (x))^{2} }\). Thus, the correctness of (T1.2) is confirmed.
-
(T1.3) As stated in Definition 5, the quasi-ordering \(M_{\alpha } (p)\underline { \succ }_{Q} p\underline { \succ }_{Q} N_{\beta } (p)\) holds because \(\mu_{{M_{\alpha } (P)}} (x) \ge \mu_{P} (x) \ge \mu_{{N_{\beta } (P)}} (x)\) and \(\nu_{{M_{\alpha } (P)}} (x) \le \nu_{P} (x) \le \nu_{{N_{\beta } (P)}} (x)\).
-
(T1.4) Applying Definitions 3, 7, and 8, the following is true:
$$\tau_{{M_{\alpha } (P)}} (x) = \sqrt {1 - (\mu_{P} (x))^{2} - \alpha (\tau_{P} (x))^{2} - (\nu_{P} (x))^{2} } \le \sqrt {1 - (\mu_{P} (x))^{2} - (\nu_{P} (x))^{2} } = \tau_{P} (x),$$$$\tau_{{N_{\beta } (P)}} (x) = \sqrt {1 - (\mu_{P} (x))^{2} - (\nu_{P} (x))^{2} - \beta (\tau_{P} (x))^{2} } \le \sqrt {1 - (\mu_{P} (x))^{2} - (\nu_{P} (x))^{2} } = \tau_{P} (x).$$Accordingly, this equation indicates that \(\max \{ \tau_{{M_{\alpha } (P)}} (x),\tau_{{N_{\beta } (P)}} (x)\} \le \tau_{P} (x)\). Based on Definition 3, it is known that \(r_{P} (x) = \sqrt {1 - (\tau_{P} (x))^{2} }\), \(r_{{M_{\alpha } (P)}} (x) = \sqrt {1 - (\tau_{{M_{\alpha } (P)}} (x))^{2} }\), and \(r_{{N_{\beta } (P)}} (x) = \sqrt {1 - (\tau_{{N_{\beta } (P)}} (x))^{2} }\). It indicates that \(\min \{ r_{{M_{\alpha } (P)}} (x),r_{{N_{\beta } (P)}} (x)\} \ge r_{P} (x)\); thus, the property of (T1.4) holds.
-
(T1.5) As demonstrated in Chen (2018b), the closer the directions of a commitment (i.e., \(d_{P} (x)\), \(d_{{M_{\alpha } (P)}} (x)\), and \(d_{{N_{\beta } (P)}} (x)\)) are to 1 (or 0), the closer the radians (i.e., \(\theta_{P} (x)\), \(\theta_{{M_{\alpha } (P)}} (x)\), and \(\theta_{{N_{\beta } (P)}} (x)\)) are to 0 (or \(\pi /2\)) and the greater the strength of commitment (i.e., \(r_{P} (x)\), \(r_{{M_{\alpha } (P)}} (x)\), and \(r_{{N_{\beta } (P)}} (x)\)) is to the supporting (or disapproving) belongingness of x in P. Therefore, the results shown in (T1.2) indicate that \(d_{{N_{\beta } (P)}} (x) \le d_{P} (x) \le d_{{M_{\alpha } (P)}} (x)\) and \(\theta_{{M_{\alpha } (P)}} (x) \le \theta_{P} (x) \le \theta_{{N_{\beta } (P)}} (x)\) hold. The correctness of (T1.5) is confirmed.
-
(T1.6) Based on Definition 3, it is recognized that \(p^{c} = (\mu_{{P^{c} }} (x),\nu_{{P^{c} }} (x);r_{{P^{c} }} (x),d_{{P^{c} }} (x)) = (\nu_{P} (x),\)\(\mu_{P} (x);r_{P} (x),1 - d_{P} (x))\), which also indicates that \(\tau_{{P^{c} }} (x) = \tau_{P} (x)\) from \(r_{{P^{c} }} (x) = r_{P} (x)\). Applying Definition 7, the upper estimation \(M_{\alpha } (p^{c} )\) of the complement of p is given by: \(M_{\alpha } (p^{c} ) =\)\((\mu_{{M_{\alpha } (P^{c} )}} (x),\nu_{{M_{\alpha } (P^{c} )}} (x);r_{{M_{\alpha } (P^{c} )}} (x),d_{{M_{\alpha } (P^{c} )}} (x))\). The membership grade and the nonmembership grade in \(M_{\alpha } (p^{c} )\) are separately derived as follows: \(\mu_{{M_{\alpha } (P^{c} )}} (x) = \sqrt {(\mu_{{P^{c} }} (x))^{2} + \alpha (\tau_{{P^{c} }} (x))^{2} } =\)\(\sqrt {(\nu_{P} (x))^{2} + \alpha (\tau_{P} (x))^{2} } = \nu_{{N_{\alpha } (P)}} (x)\) and \(\nu_{{M_{\alpha } (P^{c} )}} (x) = \nu_{{P^{c} }} (x) = \mu_{P} (x) = \mu_{{N_{\alpha } (P)}} (x)\). For the complement \((M_{\alpha } (p^{c} ))^{c}\) of the upper estimation \(M_{\alpha } (p^{c} )\), \(\mu_{{(M_{\alpha } (P^{c} ))^{c} }} (x) = \nu_{{M_{\alpha } (P^{c} )}} (x) = \mu_{{N_{\alpha } (P)}} (x)\) and \(\nu_{{(M_{\alpha } (P^{c} ))^{c} }} (x) = \mu_{{M_{\alpha } (P^{c} )}} (x) = \nu_{{N_{\alpha } (P)}} (x)\). One can verify that \((M_{\alpha } (p^{c} ))^{c} = N_{\alpha } (p)\).
-
(T1.7) Based on Definition 8, the lower estimation \(N_{\beta } (p^{c} )\) of the complement of p is obtained by \(N_{\beta } (p^{c} ) = (\mu_{{N_{\beta } (P^{c} )}} (x),\nu_{{N_{\beta } (P^{c} )}} (x);r_{{N_{\beta } (P^{c} )}} (x),d_{{N_{\beta } (P^{c} )}} (x))\). The membership and nonmembership grades in \(N_{\beta } (p^{c} )\) are separately calculated as follows: \(\mu_{{N_{\beta } (P^{c} )}} (x) = \mu_{{P^{c} }} (x) = \nu_{P} (x) = \nu_{{M_{\beta } (P)}} (x)\) and \(\nu_{{N_{\beta } (P^{c} )}} (x) = \sqrt {(\nu_{{P^{c} }} (x))^{2} + \beta (\tau_{{P^{c} }} (x))^{2} } =\)\(\sqrt {(\mu_{P} (x))^{2} + \beta (\tau_{P} (x))^{2} } = \mu_{{M_{\beta } (P)}} (x)\). For the complement \((N_{\beta } (p^{c} ))^{c}\) of the lower estimation \(N_{\beta } (p^{c} )\), it is apparent that \(\mu_{{(N_{\beta } (P^{c} ))^{c} }} (x) = \nu_{{N_{\beta } (P^{c} )}} (x) = \mu_{{M_{\beta } (P)}} (x)\) and \(\nu_{{(N_{\beta } (P^{c} ))^{c} }} (x) = \mu_{{N_{\beta } (P^{c} )}} (x) = \nu_{{M_{\beta } (P)}} (x)\), which yields \((N_{\beta } (p^{c} ))^{c} = M_{\beta } (p)\), i.e., (T1.7) is valid. Notably, (T1.6) and (T1.7) demonstrate that the two PF point operators Mα and Nβ are dualities. This confirms the truth of Theorem 1.
1.2 A.2 Proof of Theorem 2
In the first place, (T2.2) is trivial. (T2.1) and (T2.3) are demonstrated by virtue of mathematical induction on η. Using the agency of the PF point operator Mα on the recurrent upper estimation \(M_{\alpha }^{\eta - 1} (p)\), it is generated that:
for \(\eta = 0,1,2, \ldots\), in which \(\mu_{{M_{\alpha }^{0} (P)}} (x) = \mu_{P} (x)\), \(\nu_{{M_{\alpha }^{0} (P)}} (x) = \nu_{P} (x)\), and \(\tau_{{M_{\alpha }^{0} (P)}} (x) = \tau_{P} (x)\). Let η = 1. Based on Definition 7 and the condition that \((\tau_{P} (x))^{2} = 1 - (\mu_{P} (x))^{2} - (\nu_{P} (x))^{2}\), one can render:
The above results are concordant with the outcome of η = 1 in (T2.1) and (T2.3); that is, the two properties hold for η = 1. Next, let η = 2. It is evident to deduce that \(\nu_{{M_{\alpha }^{2} (P)}} (x) = \nu_{{M_{\alpha }^{1} (P)}} (x) = \nu_{P} (x)\). By applying Definitions 7 and 9, it is straightly gained that:
\(r_{{M_{\alpha }^{2} (P)}} (x) = \left\{ {(\mu_{P} (x))^{2} + \alpha \left( {1 - (\mu_{P} (x))^{2} } \right) - \alpha (\nu_{P} (x))^{2} + \alpha \left[ {1 - (\mu_{P} (x))^{2} - (\nu_{P} (x))^{2} - \alpha \left( {1 - (\mu_{P} (x))^{2} } \right)\left. {\left. { + \alpha (\nu_{P} (x))^{2} } \right] + (\nu_{P} (x))^{2} } \right\}^{0.5} = \sqrt {(\mu_{P} (x))^{2} + (\nu_{P} (x))^{2} + \left( {1 - (\mu_{P} (x))^{2} } \right)\left( {2\alpha - \alpha^{2} } \right) - \alpha (\nu_{P} (x))^{2} \left( {2 - \alpha } \right)} .} \right.} \right. \,\) The results are consistent with the outcome of η = 2 in (T2.1) and (T2.3); thus, the determination equations are valid in the case of η = 2. Next, assume that (T2.1) and (T2.3) hold for \(\eta = \vartheta\). Then,
and \(\nu_{{M_{\alpha }^{\vartheta } (P)}} (x) = \nu_{P} (x)\). When \(\eta = \vartheta + 1\), one has \(\nu_{{M_{\alpha }^{\vartheta + 1} (P)}} (x) = \nu_{P} (x)\); moreover, by way of Definitions 7 and 9, it is yielded that:
On this basis, (T2.1) and (T2.3) hold for \(\eta = \vartheta + 1\). Accordingly, the properties of (T2.1) and (T2.3) are fulfilled corresponding to all η values.
(T2.4) Based on (T2.1), the discrepancy between squared membership grades in the recurrent upper estimations \(M_{\alpha }^{\eta } (p)\) and \(M_{\alpha }^{\eta - 1} (p)\) for all \(\alpha \in [0,1]\) is calculated in this way:
It becomes clear that \(\alpha \ge 0\), \((1 - \alpha )^{\eta - 1} \ge 0\), and \(1 - (\mu_{P} (x))^{2} - \alpha (\nu_{P} (x))^{2} \ge 0\) from \(\alpha \in [0,1]\) and \(0 \le (\mu_{P} (x))^{2} + (\nu_{P} (x))^{2} \le 1\). This evidences that \((\mu_{{M_{\alpha }^{\eta } (P)}} (x))^{2} - (\mu_{{M_{\alpha }^{\eta - 1} (P)}} (x))^{2} \ge 0\), which reveals that \(\mu_{{M_{\alpha }^{\eta } (P)}} (x) \ge \mu_{{M_{\alpha }^{\eta - 1} (P)}} (x)\). On the other side, based on (T2.2), the difference between the non-membership grades in the recurrent upper estimations \(M_{\alpha }^{\eta } (p)\) and \(M_{\alpha }^{\eta - 1} (p)\) is always equal to zero because \(\nu_{{M_{\alpha }^{\eta } (P)}} (x) = \nu_{{M_{\alpha }^{\eta - 1} (P)}} (x) = \nu_{P} (x)\) for each \(\alpha \in [0,1]\), which straightly infers that the inequality \(\nu_{{M_{\alpha }^{\eta } (P)}} (x) \le \nu_{{M_{\alpha }^{\eta - 1} (P)}} (x)\) is satisfied. From Definition 5, the natural quasi-ordering \(M_{\alpha }^{\eta } (p)\underline { \succ }_{Q} M_{\alpha }^{\eta - 1} (p)\) holds because \(\mu_{{M_{\alpha }^{\eta } (P)}} (x) \ge \mu_{{M_{\alpha }^{\eta - 1} (P)}} (x)\) and \(\nu_{{M_{\alpha }^{\eta } (P)}} (x) \le \nu_{{M_{\alpha }^{\eta - 1} (P)}} (x)\). As a result, (T2.4) is correct.
(T2.5) By using (T2.1), it is yielded that \(\lim_{\eta \to \infty } \mu_{{M_{\alpha }^{\eta } (P)}} (x) = \lim_{\eta \to \infty } [(\mu_{P} (x))^{2} + (1 - (\mu_{P} (x))^{2} ) \cdot\)\((1 - (1 - \alpha )^{\eta } ) - \alpha (\nu_{P} (x))^{2} (\sum\nolimits_{k = 0}^{\eta - 1} {(1 - \alpha )^{k} } )]^{0.5} = \sqrt {1 - (\nu_{P} (x))^{2} }\). From (T2.2), it is revealed that \(\lim_{\eta \to \infty } \nu_{{M_{\alpha }^{\eta } (P)}} (x) = \lim_{\eta \to \infty } \nu_{P} (x) = \nu_{P} (x)\). By applying Definition 2, it indicates that \(\lim_{\eta \to \infty } M_{\alpha }^{\eta } (p) =\)\((\sqrt {1 - (\nu_{P} (x))^{2} } ,\nu_{P} (x);1,(\pi - 2 \cdot sin^{ - 1} (\nu_{P} (x)))/\pi ))\). Thus, (T2.5) is confirmed, which demonstrates the truth of Theorem 2.
1.3 A.3 Proof of Theorem 4
(T4.1) The values of scalar functions range from 0 to 1 on the basis of Definition 4; thus, \(0 \le V(p_{ij} ),V(M_{{\alpha_{ij} }} (p_{ij} )),V(N_{{\beta_{ij} }} (p_{ij} )) \le 1\). In accordance with the property in (T1.5), \(d_{ij}^{N} \le d_{ij} \le d_{ij}^{M}\) and \(\theta_{ij}^{M} \le \theta_{ij} \le \theta_{ij}^{N}\). Moreover, \(r_{ij}^{M} \ge r_{ij}\) and \(r_{ij}^{N} \ge r_{ij}\) because \(\min \{ r_{ij}^{M} ,r_{ij}^{N} \} \ge r_{ij}\) in (T1.4). It can be deduced that the two inequalities \(V(p_{ij} ) \le V(M_{{\alpha_{ij} }} (p_{ij} ))\) and \(V(N_{{\beta_{ij} }} (p_{ij} )) \le V(p_{ij} )\) are satisfied because \(r_{ij} (d_{ij} - 0.5) \le r_{ij}^{M} (d_{ij}^{M} - 0.5)\) and \(r_{ij}^{N} (0.5 - {{2 \cdot \theta_{ij}^{N} } \mathord{\left/ {\vphantom {{2 \cdot \theta_{ij}^{N} } \pi }} \right. \kern-\nulldelimiterspace} \pi }) \le r_{ij} (0.5 - {{2 \cdot \theta_{ij} } \mathord{\left/ {\vphantom {{2 \cdot \theta_{ij} } \pi }} \right. \kern-\nulldelimiterspace} \pi })\), respectively. Thus, \(0 \le V(N_{{\beta_{ij} }} (p_{ij} )) \le V(p_{ij} ) \le V(M_{{\alpha_{ij} }} (p_{ij} )) \le 1\).
(T4.2) From (29) and (31), it is known that \(r_{ij}^{M} = \sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} }\) and \(\theta_{ij}^{M} =\)\({\text{arc}}\cos \left( {{{\sqrt {(\mu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } } \mathord{\left/ {\vphantom {{\sqrt {(\mu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } } {\sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } }}} \right. \kern-\nulldelimiterspace} {\sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } }}} \right)\), respectively. From (34), the following consequence can be determined:
The partial derivative of \(V(M_{{\alpha_{ij} }} (p_{ij} ))\) in regard to αij is computed in this fashion:
Thus, \({{\partial V(M_{{\alpha_{ij} }} (p_{ij} ))} \mathord{\left/ {\vphantom {{\partial V(M_{{\alpha_{ij} }} (p_{ij} ))} {\partial \alpha_{ij} }}} \right. \kern-\nulldelimiterspace} {\partial \alpha_{ij} }} \ge 0\) because \({\text{arc}}\cos \left( {{{\sqrt {(\mu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } } \mathord{\left/ {\vphantom {{\sqrt {(\mu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } } {\sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } }}} \right. \kern-\nulldelimiterspace} {\sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } }}} \right) \le\)\(\left( {{\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4}} \right)\) and \({{\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)} \mathord{\left/ {\vphantom {{\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)} {\sqrt {1 - {{\left( {(\mu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {(\mu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } \right)} {\left( {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } \right)}}} }}} \right. \kern-\nulldelimiterspace} {\sqrt {1 - {{\left( {(\mu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {(\mu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } \right)} {\left( {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \alpha_{ij} (\tau_{ij} )^{2} } \right)}}} }} \ge 0\). Thus, \(V(M_{{\alpha_{ij} }} (p_{ij} ))\) is monotonically nondecreasing with the allocation parameter αij, thereby confirming the truth of (T4.2).
(T4.3) In accordance with (30) and (32), \(r_{ij}^{N} = \sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} }\) and \(\theta_{ij}^{N} =\)\({\text{arc}}sin\left( {{{\sqrt {(\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } } \mathord{\left/ {\vphantom {{\sqrt {(\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } } {\sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } }}} \right. \kern-\nulldelimiterspace} {\sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } }}} \right)\), respectively. Applying (35), the following is true:
The partial derivative of \(V(N_{{\beta_{ij} }} (p_{ij} ))\) compared to βij is calculated in this manner:
Because \({\text{arc}}sin\left( {{{\sqrt {(\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } } \mathord{\left/ {\vphantom {{\sqrt {(\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } } {\sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } }}} \right. \kern-\nulldelimiterspace} {\sqrt {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } }}} \right) \ge \left( {{\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4}} \right)\) and \(- {{\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)} \mathord{\left/ {\vphantom {{\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)} {}}} \right. \kern-\nulldelimiterspace} {}}\)\(\sqrt {1 - {{\left( {(\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {(\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } \right)} {\left( {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {(\mu_{ij} )^{2} + (\nu_{ij} )^{2} + \beta_{ij} (\tau_{ij} )^{2} } \right)}}} \le 0\), it is deduced that \({{\partial V(N_{{\beta_{ij} }} (p_{ij} ))} \mathord{\left/ {\vphantom {{\partial V(N_{{\beta_{ij} }} (p_{ij} ))} {\partial \beta_{ij} }}} \right. \kern-\nulldelimiterspace} {\partial \beta_{ij} }} \le 0\). Thus, \(V(N_{{\beta_{ij} }} (p_{ij} ))\) is monotonically nonincreasing with the allocation parameter βij. Thus, the correctness of (T4.3) is confirmed, which gives substance to the truth of Theorem 4.
1.4 A.4 Proof of Theorem 5
(T5.1) For notational convenience, we denote:
from which \(Lik(p_{ij} \underline { \succ } p_{kj} ) = \max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} ,0\}\). The fact that \(\max \{ \Lambda (p_{ij} ,p_{kj} ),0\} \ge 0\) yields the outcomes \(1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} \le 1\) and \(0 \le \max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} ,0\} \le 1\). Therefore, the boundedness property of \(0 \le Lik(p_{ij} \underline { \succ } p_{kj} ) \le 1\) is satisfied, and (T5.1) is correct.
(T5.2) For necessity, \(\max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} ,0\} = 0\) from the given condition \(Lik(p_{ij} \underline { \succ }\)\(p_{kj} ) = 0\). Thus, \(\max \{ \Lambda (p_{ij} ,p_{kj} ),0\} \ge 1\), which leads to \(\Lambda (p_{ij} ,p_{kj} ) \ge 1\). It can be demonstrated that \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \ge\)\(V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} )) + V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} ))\), which leads to \(V(N_{{\beta_{kj} }} (p_{kj} )) \ge V(M_{{\alpha_{ij} }} (p_{ij} ))\). For sufficiency, based on the property in (T4.1), \(V(M_{{\alpha_{ij} }} (p_{ij} )) -\)\(V(N_{{\beta_{ij} }} (p_{ij} )) \ge 0\) and \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} )) \ge 0\). Thus, \(V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} )) +\)\(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} )) \ge 0\), from which \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) - (V(N_{{\beta_{kj} }} (p_{kj} )) -\)\(V(M_{{\alpha_{ij} }} (p_{ij} ))) \ge 0\). By combining the condition \(V(N_{{\beta_{kj} }} (p_{kj} )) \ge V(M_{{\alpha_{ij} }} (p_{ij} ))\), \(V(M_{{\alpha_{kj} }} (p_{kj} )) -\)\(V(N_{{\beta_{ij} }} (p_{ij} )) \ge (V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} ))) + (V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} )))\), from which \(\Lambda (p_{ij} ,p_{kj} )\)\(\ge 1\). In addition, \(\max \{ \Lambda (p_{ij} ,p_{kj} ),0\} = \Lambda (p_{ij} ,p_{kj} ) \ge 1\) and \(1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} \le 0\). Thus, \(\max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} ,0\} = 0\) (i.e., \(Lik(p_{ij} \underline { \succ } p_{kj} ) = 0\)), and (T5.2) is valid.
(T5.3) For necessity, the given assumption \(Lik(p_{ij} \underline { \succ } p_{kj} ) = 1\) leads to the deduction that \(\max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} ,0\} = 1\). Logically, \(\Lambda (p_{ij} ,p_{kj} ) \le 0\) because \(\max \{ \Lambda (p_{ij} ,p_{kj} ),0\} = 0\). Thus, \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \le 0\), i.e., \(V(N_{{\beta_{ij} }} (p_{ij} )) \ge V(M_{{\alpha_{kj} }} (p_{kj} ))\). For sufficiency, the given assumption \(V(N_{{\beta_{ij} }} (p_{ij} )) \ge V(M_{{\alpha_{kj} }} (p_{kj} ))\) indicates that \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \le 0\). It is verified that \(V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \ge 0\) and \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} )) \ge 0\) based on (T4.1). Because \(V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} )) = 0\) and \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} )) = 0\) do not occur at the same time, the denominator in \(\Lambda (p_{ij} ,p_{kj} )\) is greater than zero on all occasions. Thus, \(\Lambda (p_{ij} ,p_{kj} ) \le 0\), which yields \(\max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} ,0\}\) = 1, namely, \(Lik(p_{ij} \underline { \succ } p_{kj} ) = 1\)). As a result, (T5.3) is satisfied.
(T5.4) To show the complementarity property, this paper makes the following four assumptions about the scalar functions presented in \(\Lambda (p_{ij} ,p_{kj} )\): (1) \(V(N_{{\beta_{ij} }} (p_{ij} )) \le V(N_{{\beta_{kj} }} (p_{kj} ))\) and \(V(M_{{\alpha_{ij} }} (p_{ij} )) \le V(M_{{\alpha_{kj} }} (p_{kj} ))\); (2) \(V(N_{{\beta_{ij} }} (p_{ij} )) \ge V(N_{{\beta_{kj} }} (p_{kj} ))\) and \(V(M_{{\alpha_{ij} }} (p_{ij} )) \ge V(M_{{\alpha_{kj} }} (p_{kj} ))\); (3) \(V(N_{{\beta_{ij} }} (p_{ij} )) \le V(N_{{\beta_{kj} }} (p_{kj} ))\) and \(V(M_{{\alpha_{ij} }} (p_{ij} )) \ge V(M_{{\alpha_{kj} }} (p_{kj} ))\); and (4) \(V(N_{{\beta_{ij} }} (p_{ij} )) \ge V(N_{{\beta_{kj} }} (p_{kj} ))\) and \(V(M_{{\alpha_{ij} }} (p_{ij} )) \le V(M_{{\alpha_{kj} }} (p_{kj} ))\). We denote \(\Lambda (p_{kj} ,p_{ij} ) = (V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{kj} }} (p_{kj} )))/\)\((V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} )) + V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} )))\). It is apparent that \(\Lambda (p_{ij} ,p_{kj} ) + \Lambda (p_{kj} ,p_{ij} )\)\(= 1\). In Case (i), in the light of the assumption and the property in (T4.1), \(V(N_{{\beta_{ij} }} (p_{ij} )) \le V(M_{{\alpha_{ij} }} (p_{ij} ))\)\(\le V(M_{{\alpha_{kj} }} (p_{kj} ))\), which indicates that \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \ge 0\). In the event that \(V(M_{{\alpha_{ij} }} (p_{ij} )) \ge\)\(V(N_{{\beta_{kj} }} (p_{kj} ))\), it is readily corroborated that \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \le (V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} )))\)\(+ (V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} )))\). Thus, \(0 \le \Lambda (p_{ij} ,p_{kj} ) \le 1\) and \(Lik(p_{ij} \underline { \succ } p_{kj} ) = 1 - \Lambda (p_{ij} ,p_{kj} )\). Furthermore, the condition \(V(M_{{\alpha_{ij} }} (p_{ij} )) \ge V(N_{{\beta_{kj} }} (p_{kj} ))\) implies that \(0 \le V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{kj} }} (p_{kj} ))\)\(\le 1\). It is apparent that \(0 \le V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \le 1\) and \(0 \le V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} )) \le 1\), which yields \(Lik(p_{kj} \underline { \succ } p_{ij} ) = 1 - \Lambda (p_{kj} ,p_{ij} )\). Accordingly, it is found that:
Therefore, (T5.4) holds when \(V(M_{{\alpha_{ij} }} (p_{ij} )) \ge V(N_{{\beta_{kj} }} (p_{kj} ))\) in Case (1). When \(V(M_{{\alpha_{ij} }} (p_{ij} )) \le\)\(V(N_{{\beta_{kj} }} (p_{kj} ))\), \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \ge (V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} ))) + (V(M_{{\alpha_{kj} }} (p_{kj} )) -\)\(V(N_{{\beta_{kj} }} (p_{kj} )))\). It follows that \(\Lambda (p_{ij} ,p_{kj} ) \ge 1\) and \(Lik(p_{ij} \underline { \succ } p_{kj} ) = \max \{ 1 - \Lambda (p_{ij} ,p_{kj} ),0\} = 0\). Thus, \(V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{kj} }} (p_{kj} )) \le 0\) based on the condition \(V(M_{{\alpha_{ij} }} (p_{ij} )) \le V(N_{{\beta_{kj} }} (p_{kj} ))\) and \(Lik(p_{kj} \underline { \succ } p_{ij} ) = \max \{ 1 - 0,0\} = 1\), which indicates that \(Lik(p_{ij} \underline { \succ } p_{kj} ) + Lik(p_{kj} \underline { \succ } p_{ij} ) = 1\). Therefore, (T5.4) holds when \(V(M_{{\alpha_{ij} }} (p_{ij} )) \le V(N_{{\beta_{kj} }} (p_{kj} ))\) in Case (1). Case (2) can be corroborated in an analogous way. Next, it is known that \(V(N_{{\beta_{ij} }} (p_{ij} )) \le V(N_{{\beta_{kj} }} (p_{kj} ))\) and \(V(M_{{\alpha_{ij} }} (p_{ij} )) \ge V(M_{{\alpha_{kj} }} (p_{kj} ))\) in Case (3). Based on (T4.1), \(V(M_{{\alpha_{kj} }} (p_{kj} )) \ge V(N_{{\beta_{kj} }} (p_{kj} ))\), which shows that \(V(M_{{\alpha_{kj} }} (p_{kj} ))\)\(\ge V(N_{{\beta_{kj} }} (p_{kj} )) \ge V(N_{{\beta_{ij} }} (p_{ij} ))\) and \(V(M_{{\alpha_{ij} }} (p_{ij} )) \ge V(M_{{\alpha_{kj} }} (p_{kj} )) \ge V(N_{{\beta_{kj} }} (p_{kj} ))\). Thus, \(V(M_{{\alpha_{kj} }} (p_{kj} )) -\)\(V(N_{{\beta_{ij} }} (p_{ij} )) \ge 0\) and \(V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{kj} }} (p_{kj} )) \ge 0\) are obtained. It is verified that \((V(M_{{\alpha_{ij} }} (p_{ij} )) -\)\(V(N_{{\beta_{ij} }} (p_{ij} ))) + (V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{kj} }} (p_{kj} ))) = (V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} ))) + (V(M_{{\alpha_{ij} }} (p_{ij} )) -\)\(V(N_{{\beta_{kj} }} (p_{kj} ))) \ge V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \ge 0\). Thus, \(0 \le \Lambda (p_{ij} ,p_{kj} ) \le 1\), which implies that \(Lik(p_{ij} \underline { \succ } p_{kj} ) = \max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} ,0\} = 1 - \Lambda (p_{ij} ,p_{kj} )\). Thereafter, the result \(Lik(p_{kj} \underline { \succ } p_{ij} )\)\(= 1 - \Lambda (p_{kj} ,p_{ij} )\) can be acquired in a similar manner. Thus, \(Lik(p_{ij} \underline { \succ } p_{kj} ) + Lik(p_{kj} \underline { \succ } p_{ij} )\)\(= (1 - \Lambda (p_{ij} ,p_{kj} )) + (1 - \Lambda (p_{kj} ,p_{ij} )) = 1\). Accordingly, (T5.4) is fulfilled in Case (iii), and Case (iv) is corroborated in an analogous manner. Based on these results, the complementarity property is possessed by the proposed PF likelihood measure, and (T5.4) is fulfilled.
(T5.5) When \(Lik(p_{ij} \underline { \succ } p_{kj} ) = Lik(p_{kj} \underline { \succ } p_{ij} )\), it is clearly understood that \(Lik(p_{ij} \underline { \succ } p_{kj} ) =\)\(Lik(p_{kj} \underline { \succ } p_{ij} ) = 0.5\) through the agency of (T5.4), and thus, (T5.5) is valid. (T5.6) can be easily inferred from (T5.5).
(T5.7) Based on (T5.4) and (T5.6), \(Lik(p_{ij} \underline { \succ } p_{kj} ) + Lik(p_{kj} \underline { \succ } p_{ij} ) = 1\) and \(Lik(p_{ij} \underline { \succ } p_{ij} ) = 0.5\), respectively. Accordingly, the following can be derived:
This confirms the correctness of Theorem 5.
1.5 A.5 Proof of Theorem 7
Let us denote \(\Lambda (p_{ij} ,p_{lj} ) = (V(M_{{\alpha_{lj} }} (p_{lj} )) - V(N_{{\beta_{ij} }} (p_{ij} )))/(V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{ij} }} (p_{ij} )) +\)\(V(M_{{\alpha_{lj} }} (p_{lj} )) - V(N_{{\beta_{lj} }} (p_{lj} )))\) and \(\Lambda (p_{lj} ,p_{ij} ) = (V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{lj} }} (p_{lj} )))/(V(M_{{\alpha_{ij} }} (p_{ij} )) -\)\(V(N_{{\beta_{ij} }} (p_{ij} )) + V(M_{{\alpha_{lj} }} (p_{lj} )) - V(N_{{\beta_{lj} }} (p_{lj} )))\) for brevity. Thus, \(\Lambda (p_{ij} ,p_{lj} ) + \Lambda (p_{lj} ,p_{ij} ) = 1\). Consider the supposition that \(Lik(p_{ij} \underline { \succ } p_{lj} ) \ge 0.5\) and \(Lik(p_{lj} \underline { \succ } p_{kj} ) \ge 0.5\). The assumption \(Lik(p_{ij} \underline { \succ } p_{lj} ) =\)\(\max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{lj} ),0\} ,0\} \ge 0.5\) indicates that \(V(M_{{\alpha_{lj} }} (p_{lj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \ge 0\) and \(1 -\)\(\Lambda (p_{ij} ,p_{lj} ) \ge 0.5\). It is known that \(\Lambda (p_{lj} ,p_{ij} ) \ge 0.5\) because \(\Lambda (p_{ij} ,p_{lj} ) + \Lambda (p_{lj} ,p_{ij} ) = 1\). It is clear that
Thus, \(0 \le V(M_{{\alpha_{lj} }} (p_{lj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \le V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{lj} }} (p_{lj} ))\). The assumption 0.5\(Lik(p_{lj} \underline { \succ } p_{kj} ) \ge\) (i.e., \(\max \{ 1 - \max \{ \Lambda (p_{lj} ,p_{kj} ),0\} ,0\} \ge 0.5\)) shows that \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{lj} }} (p_{lj} )) \ge 0\) and \(1 - \Lambda (p_{lj} ,p_{kj} ) \ge 0.5\). From \(\Lambda (p_{lj} ,p_{kj} ) + \Lambda (p_{kj} ,p_{lj} ) = 1\), one obtains \(\Lambda (p_{kj} ,p_{lj} ) \ge 0.5\). To be specific,
It can be determined that \(0 \le V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{lj} }} (p_{lj} )) \le V(M_{{\alpha_{lj} }} (p_{lj} )) - V(N_{{\beta_{kj} }} (p_{kj} ))\). By adding the obtained inequalities \(0 \le V(M_{{\alpha_{lj} }} (p_{lj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \le V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{lj} }} (p_{lj} ))\) and \(0 \le\)\(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{lj} }} (p_{lj} )) \le V(M_{{\alpha_{lj} }} (p_{lj} )) - V(N_{{\beta_{kj} }} (p_{kj} ))\), it is verified that \(0 \le V(M_{{\alpha_{kj} }} (p_{kj} ))\)\(- V(N_{{\beta_{ij} }} (p_{ij} )) \le V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{kj} }} (p_{kj} ))\). By adding \(V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} ))\) to this inequality, the following is obtained: \(0 \le V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )){ + }V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )) \le\)\(V(M_{{\alpha_{ij} }} (p_{ij} )) - V(N_{{\beta_{kj} }} (p_{kj} )){ + }V(M_{{\alpha_{kj} }} (p_{kj} )) - V(N_{{\beta_{ij} }} (p_{ij} )).\) This indicates that:
As a consequence, the following is obtained:
Namely, \(0 \le \Lambda (p_{ij} ,p_{kj} ) \le 0.5\). Thus, it can be demonstrated that \(0 \le \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} \le 0.5\) and \(0.5 \le 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} \le 1\). Accordingly, it is shown that \(0.5 \le \max \{ 1 - \max \{ \Lambda (p_{ij} ,p_{kj} ),0\} ,0\} \le 1\), which indicates that \(Lik(p_{ij} \underline { \succ } p_{kj} ) \ge 0.5\). Therefore, the PF likelihood measure possesses the property of weak transitivity, which demonstrates the truth of Theorem 7.
1.6 A.6 Proof of Theorem 8
(T8.1) According to (T5.1) and (T5.6), it is known that \(0 \le Lik(p_{kj} \underline { \succ } p_{ij} ) \le 1\) and \(Lik(p_{kj} \underline { \succ } p_{kj} ) = 0.5\), respectively. Thus, the subsequent outcomes can be determined:
Therefore, it follows that \({1 \mathord{\left/ {\vphantom {1 {2m}}} \right. \kern-\nulldelimiterspace} {2m}} \le Pen(p_{ij} ) \le {3 \mathord{\left/ {\vphantom {3 {2m}}} \right. \kern-\nulldelimiterspace} {2m}}\), and (T8.1) is correct.
(T8.2) With the help of the property \(Lik(p_{kj} \underline { \succ } p_{ij} ) + Lik(p_{ij} \underline { \succ } p_{kj} ) = 1\) based on (T5.4), one can quickly obtain the following:
(T8.3) Regarding an evaluative criterion cj, it can be determined the following:
(T8.4) can be trivially proven through the medium of (T8.3), which demonstrates the correctness of Theorem 8.
1.7 A.7 Proof of Theorem 9
Theorem 9 will be demonstrated under the aegis of mathematical induction on n. On the occasion that n = 2, it can be received that \(\Delta_{i}^{\phi } = \left[ {\left( {Pen(p_{i1} ) \cdot \left| {\Phi_{i1} - \phi } \right|} \right) \odot w_{1} } \right] \oplus\)\(\left[ {\left( {Pen(p_{i2} ) \cdot \left| {\Phi_{i2} - \phi } \right|} \right) \odot w_{2} } \right]\). Applying the arithmetic operations in Definition 6, the two-dimensional representation \(\Delta_{i}^{\prime\phi }\) (\(= (\mu_{\Delta i}^{\phi } ,\nu_{\Delta i}^{\phi } )\)) is calculated as follows:
It can be observed that (43) is fulfilled for n = 2. Suppose that (43) holds for \(n = \varsigma\), namely,
When \(n = \varsigma + 1\), based on Definition 14, it can be acquired that:
By use of the arithmetic operations with respect to the two-dimensional representation for Pythagorean membership grades, one obtains:
It reveals that (43) is satisfied for \(n = \varsigma + 1\). As a result, (43) is valid in connection with all n, which confirms the truth of Theorem 9.
1.8 A.8 Proof of Theorem 10
(T10.1) Based on Definition 15 and \(0 \le r_{\Delta i}^{\phi } ,d_{\Delta i}^{\phi } \le 1\), it is readily corroborated that \(V(\Delta_{i}^{\phi } )\) would be in the range of 0 − 1 (i.e., \(0 \le V(\Delta_{i}^{\phi } ) \le 1\)).
(T10.2) Concerning necessity, the precondition \(V(\Delta_{i}^{\phi } ) = 0\) indicates that \(0.5 + r_{\Delta i}^{\phi } \cdot (d_{\Delta i}^{\phi }\)\(- 0.5) = 0\) (or equivalently, \(0.5 + r_{\Delta i}^{\phi } \cdot (0.5 - (2/\pi ) \cdot \theta_{\Delta i}^{\phi } ) = 0\)). It is directly validated that \(r_{\Delta i}^{\phi } = 1\) and \(d_{\Delta i}^{\phi } = 0\) hold due to the conditions \(r_{\Delta i}^{\phi } \cdot (d_{\Delta i}^{\phi } - 0.5) = - 0.5\) and \(0 \le r_{\Delta i}^{\phi } ,d_{\Delta i}^{\phi } \le 1\). Alternately, the conditions \(r_{\Delta i}^{\phi } \cdot (0.5 - (2/\pi ) \cdot \theta_{\Delta i}^{\phi } ) = - 0.5\), \(0 \le r_{\Delta i}^{\phi } \le 1\), and \(0 \le \theta_{\Delta i}^{\phi } \le \pi /2\) demonstrate the truth of \(r_{\Delta i}^{\phi } = 1\) and \(\theta_{\Delta i}^{\phi } = \pi /2\). In light of Definition 2, \(\mu_{\Delta i}^{\phi } = r_{\Delta i}^{\phi } \cdot \cos (\theta_{\Delta i}^{\phi } ) = 0\) and \(\nu_{\Delta i}^{\phi } = r_{\Delta i}^{\phi } \cdot sin(\theta_{\Delta i}^{\phi } ) = 1\). Thus, it can be confirmed that \(\Delta_{i}^{\phi } = (0,1;1,0)\). For sufficiency, the condition \(\Delta_{i}^{\phi } = (0,1;1,0)\) yields \(V(\Delta_{i}^{\phi } ) = 0\) by use of Definition 15. Based on these results, (T10.2) is valid.
(T10.3) For necessity, the precondition \(V(\Delta_{i}^{\phi } ) = 1\) indicates that \(r_{\Delta i}^{\phi } \cdot (d_{\Delta i}^{\phi } - 0.5) = 0.5\) (or equivalently, \(r_{\Delta i}^{\phi } \cdot (0.5 - (2/\pi ) \cdot \theta_{\Delta i}^{\phi } ) = 0.5\)). On the basis of Definitions 1 and 2, it is known that \(r_{\Delta i}^{\phi } = d_{\Delta i}^{\phi } = 1\) (or equivalently, \(r_{\Delta i}^{\phi } = 1\) and \(\theta_{\Delta i}^{\phi } = 0\)). It is shown that \(\Delta_{i}^{\phi } = (1,0;1,1)\) from \(\mu_{\Delta i}^{\phi } = r_{\Delta i}^{\phi } \cdot \cos (\theta_{\Delta i}^{\phi } ) = 1\) and \(\nu_{\Delta i}^{\phi } = r_{\Delta i}^{\phi } \cdot sin(\theta_{\Delta i}^{\phi } ) = 0\). For sufficiency, it is revealed that \(V(\Delta_{i}^{\phi } ) = 1\) when \(\Delta_{i}^{\phi } = (1,0;1,1)\). Therefore, (T10.3) is valid.
(T10.4) is known based on Definition 15. In (T10.5), the precondition \(\tau_{\Delta i}^{\phi } = 0\) indicates that \(r_{\Delta i}^{\phi } = 1\). Thus, \(V(\Delta_{i}^{\phi } ) = 0.5 + 1 \cdot (d_{\Delta i}^{\phi } - 0.5) = d_{\Delta i}^{\phi }\), which completes the proof of Theorem 10.
Appendix B: Detailed result tables
Rights and permissions
About this article
Cite this article
Chen, TY. Decision support modeling for multiple criteria assessments using a likelihood-based consensus ranking method under Pythagorean fuzzy uncertainty. Artif Intell Rev 55, 4879–4939 (2022). https://doi.org/10.1007/s10462-021-10122-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10462-021-10122-z