[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Artificial intelligence methods for analysis of electrocardiogram signals for cardiac abnormalities: state-of-the-art and future challenges

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) in India and globally are the major cause of mortality, as revealed by the World Health Organization (WHO). The irregularities in the pace of heartbeats, called cardiac arrhythmias or heart arrhythmias, are one of the commonly diagnosed CVDs caused by ischemic heart disease, hypertension, alcohol intake, and stressful lifestyle. Other than the listed CVDs, the abnormality in the cardiac rhythm caused by the long term mental stress (stimulated by Autonomic Nervous System (ANS)) is a challenging issue for researchers. Early detection of cardiac arrhythmias through automatic electronic techniques is an important research field since the invention of electrocardiogram (ECG or EKG) and advanced machine learning algorithms. ECG (EKG) provides the record of variations in electrical activity associated with the cardiac cycle, used by cardiologists and researchers as a gold standard to study the heart function. The present work is aimed to provide an extensive survey of work done by researchers in the area of automated ECG analysis and classification of regular & irregular classes of heartbeats by conventional and modern artificial intelligence (AI) methods. The artificial intelligence (AI) based methods have emerged popularly during the last decade for the automatic and early diagnosis of clinical symptoms of arrhythmias. In this work, the literature is explored for the last two decades to review the performance of AI and other computer-based techniques to analyze the ECG signals for the prediction of cardiac (heart rhythm) disorders. The existing ECG feature extraction techniques and machine learning (ML) methods used for ECG signal analysis and classification are compared using the performance metrics like specificity, sensitivity, accuracy, positive predictivity value, etc. Some popular AI methods, which include, artificial neural networks (ANN), Fuzzy logic systems, and other machine learning algorithms (support vector machines (SVM), k-nearest neighbor (KNN), etc.) are considered in this review work for the applications of cardiac arrhythmia classification. The popular ECG databases available publicly to evaluate the classification accuracy of the classifier are also mentioned. The aim is to provide the reader, the prerequisites, the methods used in the last two decades, and the systematic approach, all at one place to further purse a research work in the area of cardiovascular abnormalities detection using the ECG signal. As a contribution to the current work, future challenges for real-time remote ECG acquisition and analysis using the emerging technologies like wireless body sensor network (WBSN) and the internet of things (IoT) are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Saini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S.K., Gupta, R. Artificial intelligence methods for analysis of electrocardiogram signals for cardiac abnormalities: state-of-the-art and future challenges. Artif Intell Rev 55, 1519–1565 (2022). https://doi.org/10.1007/s10462-021-09999-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-09999-7

Keywords

Navigation