[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Spatiotemporal clustering: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

An increase in the size of data repositories of spatiotemporal data has opened up new challenges in the fields of spatiotemporal data analysis and data mining. Foremost among them is “spatiotemporal clustering,” a subfield of data mining that is increasingly becoming popular because of its applications in wide-ranging areas such as engineering, surveillance, transportation, environmental and seismology studies, and mobile data analysis. This review paper presents a comprehensive review of spatiotemporal clustering approaches and their applications as well as a brief tutorial on the taxonomy of data types in the spatiotemporal domain and patterns. Additionally, the data pre-processing techniques, access methods, cluster validation, space–time scan statistics, software tools, and datasets used by various spatiotemporal clustering algorithms are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Achtert E, Kriegel H, Zimek A (2008) ELKI: a software system for evaluation of subspace clustering algorithms. Scientific and statistical database management (SSDBM), pp 580–585

  • Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of th ACM SIGMOD’98 international conference on management of data, Seattle, WA, pp 94–105

  • Agrawal KP, Garg S, Sharma S, Patel P (2016) Development and validation of OPTICS based spatio-temporal clustering technique. Inf Sci (Ny) 369:388–401. https://doi.org/10.1016/j.ins.2016.06.048

    Article  Google Scholar 

  • Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng 63:503–527. https://doi.org/10.1016/j.datak.2007.03.016

    Article  Google Scholar 

  • Alatrista-Salas H, Azé J, Bringay S et al (2015) A knowledge discovery process for spatiotemporal data: application to river water quality monitoring. Ecol Inform 26:127–139. https://doi.org/10.1016/j.ecoinf.2014.05.011

    Article  Google Scholar 

  • Alon J, Sclaroff S, Kollios G, Pavlovic V (2003) Discovering clusters in motion time-series data. In: 2003 IEEE computer society conference on computer vision and pattern, 2003 proceedings, vol 1, pp I–375. https://doi.org/10.1109/cvpr.2003.1211378

  • Alvares LO, Palma A, Oliveira G, Bogorny V (2010) Weka-STPM: from trajectory samples to semantic trajectories. Proc Work Open Source Code 1:1–6

    Google Scholar 

  • Alvares LO, Loy AM, Renso C, Bogorny V (2011) An algorithm to identify avoidance behavior in moving object trajectories. J Braz Comput Soc 17:193–203. https://doi.org/10.1007/s13173-011-0037-3

    Article  Google Scholar 

  • Anbaroglu B, Cheng T, Heydecker B (2015) Non-recurrent traffic congestion detection on heterogeneous urban road networks. Transportmetrica A Transp Sci 11:754–771. https://doi.org/10.1080/23249935.2015.1087229

    Article  Google Scholar 

  • Andrienko G, Andrienko N (2008) Spatio-temporal aggregation for visual analysis of movements. In: IEEE symposium visual analytics science and technology, 2008. VAST’08

  • Andrienko G, Andrienko N (2010) Interactive cluster analysis of diverse types of spatiotemporal data. ACM SIGKDD Explor Newsl 11:19–28. https://doi.org/10.1145/1809400.1809405

    Article  Google Scholar 

  • Andrienko G, Andrienko N, Wrobel S, Augustin S (2007) Visual analytics tools for analysis of movement data. ACM SIGKDD Explor Newsl 9:38–46. https://doi.org/10.1145/1345448.1345455

    Article  Google Scholar 

  • Ankerst M, Breunig MM, Kriegel H, Sander J (1999) OPTICS : ordering points to identify the clustering structure. In: SIGMOD’99 proceedings of the1999 ACM SIGMOD international conference on management of data, vol 28, pp 49–60. https://doi.org/10.1145/304182.304187

  • Arbelaitz O, Gurrutxaga I, Muguerza J et al (2013) An extensive comparative study of cluster validity indices. Pattern Recognit 46:243–256. https://doi.org/10.1016/j.patcog.2012.07.021

    Article  Google Scholar 

  • Auria M, Nanni M, Pedreschi D (2006) Time-focused dentisty-based clustering of trajectories of moving objects. Spacial issue on mining spatio-tamporal data. JIIS 27:267–289

    Google Scholar 

  • Baglioni M, de Macêdo JAF, Renso C, Trasarti R, Wachowicz M (2009) Towards semantic interpretation of movement behavior. In: Advances in GIScience, Lecture Notes in Geoinformation and Cartography. Springer, Berlin, pp 271–288. https://doi.org/10.1007/978-3-642-00318-9_14

  • Ball GH, Hall DJ (1965) ISODATA, a novel method of data analysis and pattern classification. Stanford Research Institute, Menlo Park

    Google Scholar 

  • Becher J, Berkhin P, Freeman E (2000) Automating exploratory data analysis for efficient data mining. In: Proceedings of the 6th ACM SIGKDD, pp 424–429

  • Beckmann N, Begel H-P, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access method for points and rectangles. ACM SIGMOD Record 19(2):322–331

    Article  Google Scholar 

  • Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18:509–517

    Article  Google Scholar 

  • Berkhin P (2006) Survey of clustering data mining techniques. Group Multidimens Data Recent Adv Clust. https://doi.org/10.1007/3-540-28349-8_2

    Article  Google Scholar 

  • Bernárdez FDP (2016) Extraction of user’s stay and transitions from GPS logs: a comparison of three spatiotemporal clustering approaches. Master Thesis, Institute for Geo-information, Vienna University of Technology

  • Birant D, Kut A (2007) ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl Eng 60:208–221. https://doi.org/10.1016/j.datak.2006.01.013

    Article  Google Scholar 

  • Bogorny V, Shashi S (2010) Spatial and spatio-temporal data mining. In: 2010 IEEE international conference on data mining

  • Cai M, Revesz PZ (2000) Parametric R-Tree: an index structure for moving objects. In: Proc. of the COMAD Conf

  • Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3(1):1–27

    Article  MathSciNet  Google Scholar 

  • Campello RJGB, Moulavi D, Sander J (2013) Density-based clustering based on hierarchical density estimates. In: Pei J, Tseng VS, Cao L, Motoda H, Xu G (eds) Advances in knowledge discovery and data mining. PAKDD 2013(Lecture notes in computer science), Springer, Berlin, vol 7819, pp 160–172

  • Cao H, Mamoulis N, Cheung DW (2005) Mining frequent spatio-temporal sequential patterns. In: ICDM: Proceedings of the fifth IEEE international conference on datamining (2005). IEEE Computer Society Press, pp 82–89. https://doi.org/10.1109/icdm.2005.95

  • Chen XC, Faghmous JH, Khandelwal A, Kumar V (2015) Clustering dynamic spatio-temporal patterns in the presence of noise and missing data. In: International joint conference on artificial intelligence, pp 2575–2581

  • Chudova D, Gaffney S, Mjolsness E, Smyth P (2003) Translation-invariant mixture models for curve clustering. In: Proc ninth ACM SIGKDD int conf knowl discov data min—KDD’03 79. https://doi.org/10.1145/956750.956763

  • Clementini E, Felice PD, Oosterom PV (1993) A small set of formal topological relationships suitable for end-user interaction. In: Advances in spatial databases

  • Compieta P, Di Martino S, Bertolotto M, Ferrucci F, Kechadi T (2007) Exploratory spatio-temporal data mining and visualization. J Vis Lang Comput 18:255–279

    Article  Google Scholar 

  • Dataset Search—Google https://toolbox.google.com/datasetsearch. Accessed 05 Feb 2019

  • De Lucca Siqueira F, Bogorny V (2011) Discovering chasing behavior in moving object trajectories. Trans GIS 15:667–688. https://doi.org/10.1111/j.1467-9671.2011.01285.x

    Article  Google Scholar 

  • Doborjeh M G, Kasabov N (2015) Dynamic 3D clustering of spatio-temporal brain data in the NeuCube spiking neural network architecture on a case study of fMRI data. In: International conference on neural information processing. Springer, Cham, pp 191–198. https://doi.org/10.1007/978-3-319-26561-2_23

  • Doborjeh MG, Kasabov N, Doborjeh ZG (2018) Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data. Evolv Syst 9(3):195–211

    Article  Google Scholar 

  • Dunn JC (1974) Well separated clusters and optimal fuzzy partitions. J Cybern 4:95–105

    Article  MathSciNet  Google Scholar 

  • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of second international conference on knowledge discovery and data mining, pp 226–231

  • Faghmous JH, Kumar V (2014) A big data guide to understanding climate change: the case for theory-guided data science. Big Data 2(3):155–163. https://doi.org/10.1089/big.2014.0026

    Article  Google Scholar 

  • Fiori A, Mignone A, Rospo G (2016) DeCoClu: density consensus clustering approach for public transport data. Inf Sci 328:378–388

    Article  Google Scholar 

  • Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression models. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining KDD 99, vol 10, pp 63–72. https://doi.org/10.1145/312129.312198

  • Georgoulas G, Konstantaras A, Katsifarakis E et al (2013) “Seismic-mass” density-based algorithm for spatio-temporal clustering. Expert Syst Appl 40:4183–4189. https://doi.org/10.1016/j.eswa.2013.01.028

    Article  Google Scholar 

  • Giannotti F, Pedreschi D (2008) Mobility, data mining and privacy: geographic knowledge discovery. Springer, Heidelberg

    Book  Google Scholar 

  • Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the ACM KDD, pp. 330–339. https://doi.org/10.1145/1281192.1281230

  • Giannotti F, Kujpers B, Raffaeta A, Manco G, Baglioni M, Renso C (2008) Querying and reasoning for spatio-temporal data mining. In: Giannotti F, Pedreschi D (eds) Mobility, data mining and privacy. Springer, Berlin, pp 335–374. https://doi.org/10.1007/978-3-540-75177-9_13

    Chapter  Google Scholar 

  • Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29:1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  • Güting RH (1994) An introduction to spatial database systems. VLDB J 3(4):357–399. https://doi.org/10.1007/bf01231602

    Article  Google Scholar 

  • Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data—SIGMOD’84, pp 47–57. https://doi.org/10.1145/602259.602266

  • Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17:107–145. https://doi.org/10.1023/a:1012801612483

    Article  MATH  Google Scholar 

  • Hall M, Frank E, Holmes G et al (2009) The WEKA data mining software. ACM SIGKDD Explor 11:10–18. https://doi.org/10.1145/1656274.1656278

    Article  Google Scholar 

  • Han T, Yao H, Sun X et al (2016) Unsupervised discovery of crowd activities by saliency-based clustering. Neurocomputing 171:347–361. https://doi.org/10.1016/j.neucom.2015.06.048

    Article  Google Scholar 

  • Henrich A, Six H-W, Widmayer P (1989). The LSD-tree: spatial access to multidimensional point- and non-point-objects. In: Proceedings of 15th international conference on very large data bases, Amsterdam, pp 45–53

  • Higgs B, Abbas M (2015) Segmentation and clustering of car-following behavior: recognition of driving patterns. IEEE Trans Intell Transp Syst 16(1):81–90

    Article  Google Scholar 

  • Hu B, Jamali M, Ester M (2013) Spatio-temporal topic modeling in mobile social media for location recommendation. In: Proceedings—IEEE international conference on data mining, ICDM, pp 1073–1078. https://doi.org/10.1109/icdm.2013.139

  • Huang W, Xu S, Yan Y, Zipf A (2019) An exploration of the interaction between urban human activities and daily traffic conditions: a case study of Toronto, Canada. Cities 84:8–22. https://doi.org/10.1016/j.cities.2018.07.001

    Article  Google Scholar 

  • Hudjimartsu SA, Djatna T, Ambarwari A, Apriliantona (2018) Spatial temporal clustering for hotspot using Kulldorff scan statistic method (KSS): a case in Riau Province. In: IOP conference series: earth and environmental science, vol 54, pp 012056. http://iopscience.iop.org/article/10.1088/1755-1315/54/1/012056

  • Husch M, Schyska BU, Bremen LV (2018) CorClustST—correlation-based clustering of big spatio-temporal datasets. Future Gener Comput Syst 100:100. https://doi.org/10.1016/j.future.2018.04.002(In Press)

    Article  Google Scholar 

  • Hwang SY, Liu YH, Chiu JK, Lim EP (2005) Mining mobile group patterns: a trajectory-based approach. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 713–718

  • Izakian H, Pedrycz W (2013) Anomaly detection in time series data using a fuzzy C-means clustering. In: IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013 Joint. IEEE, pp 1513–1518

  • Izakian H, Pedrycz W, Jamal I (2013) Clustering spatiotemporal data: an augmented fuzzy c-means. IEEE Trans Fuzzy Syst 21:855–868

    Article  Google Scholar 

  • Izakian H, Pedrycz W, Jamal I (2015) Fuzzy clustering of time series data using dynamic time warping distance. Eng Appl Artif Intell 39:235–244. https://doi.org/10.1016/j.engappai.2014.12.015

    Article  Google Scholar 

  • Jeung H, Yiu ML, Zhou X, et al (2008) Discovery of convoys in trajectory databases. In: Proceedings of the VLDB endowment, vol 1, pp 1068–1080. https://doi.org/10.14778/1453856.1453971

  • Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. Adv Spat Temporal Databases SE 21(3633):364–381. https://doi.org/10.1007/11535331_21

    Article  Google Scholar 

  • Kalyani D, Chaturvedi SK (2012) A survey on spatio-temporal data mining. Int J Comput Sci Netw 1(4):1–7

    Google Scholar 

  • Kang J, Yong H (2009) Mining trajectory patterns by incorporating temporal properties. In: Proceedings of the 1st international conference on emerging databases, pp 1–6

  • Kang JH, Welbourne W, Stewart B, Borriello G (2005) Extracting places from traces of locations. ACM SIGMOBILE Mob Comput Commun Rev 9:58. https://doi.org/10.1145/1094549.1094558

    Article  Google Scholar 

  • Kirana AP, Sitanggang IS, Syaufina L(2016) Hotspot pattern distribution in peat land area in Sumatera based on spatio temporal clustering. In: The 2nd international symposium on LAPAN-IPB satellite for food security and environmental monitoring 2015, LISAT-FSEM 2015, vol 33, pp 635–645

  • Kisilevieh S, Mansmann F, Nanni M, Rinzivillo S (2010) Spatio-temporal c1ustering. In: Data mining and knowledge discovery handbook, pp 855–874

  • Kovács F, Legány C, Babos A (2005) Cluster validity measurement techniques. In: Proc 6th int symp hungarian res comput intell 2006, pp 1–11. https://doi.org/10.7547/87507315-91-9-465

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26:1481–1496

    Article  MathSciNet  Google Scholar 

  • Kulldorff M (2018) SaTScan user guide for version 9.6. https://www.satscan.org. Accessed 20 June 2018

  • Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14:799–810. https://doi.org/10.1002/sim.4780140809

    Article  Google Scholar 

  • Larose DT (2005) Discovering knowledge in data: an introduction to data mining. Wiley, Hoboken

    MATH  Google Scholar 

  • Lee CH (2012) Mining spatio-temporal information on microblogging streams using a density-based online clustering method. Expert Syst Appl 39:9623–9641. https://doi.org/10.1016/j.eswa.2012.02.136

    Article  Google Scholar 

  • Lee J, Han J, Whang K-Y (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data—SIGMOD’07, pp 593. https://doi.org/10.1145/1247480.1247546

  • Leipnik MR, Albert DP (2002) GIS in law enforcement: implementation issues and case studies. CRC Press, Sacramento

    Book  Google Scholar 

  • Li Y, Han J, Yang J (2004) Clustering moving objects. In: Proceedings of the 2004 ACM SIGKDD international conference on knowledge discovery and data mining—KDD’04, pp 617–622. https://doi.org/10.1145/1014052.1014129

  • Liu Y, Li Z, Xiong H, Gao X, Gao J (2010) Understanding of internal clustering validation measures. In: Proceedings of the 2010 IEEE international conference on data mining. pp 911–916. https://doi.org/10.1109/icdm.2010.35

  • Liu J, Xue C, He Y, Dong Q, Kong F, Hong Y (2018) Dual-constraint spatiotemporal clustering approach for exploring marine anomaly patterns using remote sensing products. IEEE J Sel Top Appl Earth Obs Remote Sens 11(11):3963–3976. https://doi.org/10.1109/jstars.2018.2873216

    Article  Google Scholar 

  • Maciag PS (2017) A survey on data mining methods for clustering complex spatiotemporal data. In: International conference: beyond databases, architectures and structures, pp 115–126. https://doi.org/10.1007/978-3-319-58274-0

  • Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297. https://projecteuclid.org/euclid.bsmsp/1200512992

  • Manjula A, Narsimha G (2014) A review on spatial data mining methods and applications. Int J Comput Eng Appl VII:208–218

    Google Scholar 

  • Martino FD, Pedrycz W, Sessa S (2018) Spatiotemporal extended fuzzy C-means clustering algorithm for hotspots detection and prediction. Fuzzy Sets Syst 340:109–126

    Article  MathSciNet  Google Scholar 

  • Mazimpaka JD, Timpf S (2016) Trajectory data mining: a review of methods and applications. J Spat Inf Sci 13:61–99. https://doi.org/10.5311/josis.2016.13.263

    Article  Google Scholar 

  • Mikut R, Reischl M (2011) Data mining tools. Wiley Interdiscip Rev Data Min Knowl Discov 1:431–443. https://doi.org/10.1002/widm.24

    Article  Google Scholar 

  • Miller HJ, Han J (2005) Geographic data mining and knowledge discovery, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • Milligan GW (1981) A monte carlo study of thirty internal criterion measures for cluster analysis. Psychometrika 46:187–199. https://doi.org/10.1007/bf02293899

    Article  MATH  Google Scholar 

  • MOD44W | LP DAAC :: NASA land data products and services. https://lpdaac.usgs.gov › MODIS › MODIS Products Table. Accessed 22 Dec 2016

  • Murray C (2013) Oracle spatial developer’s guide, 11g release 2 (11.2) E11830-15

  • Neill DB (2006) Detection of spatial and spatio-temporal clusters. PhD Thesis. School of Computer Science,Carnegie Mellon University, Pittsburgh. https://www.cs.cmu.edu/~neill/papers/thesis-final.pdf. Accessed 25 June 2018

  • NYC Taxi & Limousine Commission. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml. Accessed 21 June 2018

  • Obe RO, Hsu LS (2015) PostGIS in action, 2nd edn. Manning Publications Co., Shelter Island, NY, p 11964

    Google Scholar 

  • Otair M (2013) Approximate k-nearest neighbor based spatial clustering using kd- tree. Int J Database Manag Syst 5(1):97–108

    Article  Google Scholar 

  • Palma AT, Bogorny V, Kuijpers B, Alvares LO (2008). A clustering based approach for discovering interesting places in trajectories. In: ACMSAC. ACM Press, New York, pp 863–868

  • Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc Lond Ser I 58:240–242

    Article  Google Scholar 

  • Pelekis N, Kopanakis I, Marketos G, et al (2007) Similarity search in trajectory databases. In: Proceedings of the international workshop on temporal representation and reasoning, pp 129–140. https://doi.org/10.1109/time.2007.59

  • Plenar.io-A spatio-temporal open data platform http://plenar.io. Accessed 05 Feb 2019

  • Rendón E, Abundez I, Arizmendi A, Quiroz EM (2011) Internal versus external cluster validation indexes. Int J Comput Commun 5(1):27–34

    Google Scholar 

  • Rinzivillo S, Pedreschi D, Nanni M et al (2008) Visually driven analysis of movement data by progressive clustering. Inf Vis 7:225–239. https://doi.org/10.1057/palgrave.ivs.9500183

    Article  Google Scholar 

  • Rocha JAMR, Times VC, Oliveira G, et al (2010) DB-SMoT: a direction-based spatio-temporal clustering method. In: 2010 5th IEEE international conference intelligent systems, pp 114–119. https://doi.org/10.1109/is.2010.5548396

  • Salazar GEJ, Velez AC, Parra MCM, Ortega LO (2002) A cluster validity index for comparing non-hierarchical clustering methods. EITI 2002:1–5

    Google Scholar 

  • Samet H (1985) Using quadtree to represent spatial data. NATO ASI Ser F18:229–247

    Google Scholar 

  • Sander J, Ester M, Kriegel HPP, Xu X (1998) Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min Knowl Disc 2(2):169–194. https://doi.org/10.1023/a:1009745219419

    Article  Google Scholar 

  • Sardadi MM, Shafry M, Jupri Z, Daman D (2008) Choosing R-tree or quadtree spatial data indexing in one oracle spatial database system to make faster showing geographical map in mobile geographical information system technology. World Academy of Science, Engineering and Technology, Paris, pp 249–257

    Google Scholar 

  • Sellis TK, Roussopoulos N, Faloutsos C (1987) The R+-Tree: a dynamic index for multi- dimensional objects. In: VLDB, pp 507–518

  • Shekhar S, Varsavai RR, Celik M (2008) Spatial and spatiotemporal data mining: recent advances. Data mining: next generation challenges and future directions, AAAI Press

  • Shekhar S, Jiang Z, Ali RY et al (2015) Spatiotemporal data mining: a computational perspective. ISPRS Int J Geo-Inf 4:2306–2338. https://doi.org/10.3390/ijgi4042306

    Article  Google Scholar 

  • Spaccapietra S, Parent C, Damiani ML, De Macedo JA, Porto F, Vangenot C (2008) A conceptual view on trajectories. Data Knowl Eng 65:126–146

    Article  Google Scholar 

  • SRTM Water Body Dataset | The long term archive. https://lta.cr.usgs.gov/srtm_water_body_dataset. Accessed 14 March 2017

  • The R project for statistical computing. https://www.r-project.org. Accessed 15 Feb 2017

  • Tork HF (2012) Spatio-temporal clustering methods classification. In: Doctoral symposium on informatics engineering (DSIE’2012), pp 1–12. https://doi.org/10.13140/rg.2.1.3812.7204

  • UNISYS, Atlantic tropical storm tracking by year. http://weather.unisys.com/hurricane/atlantic/. Accessed 11 March 2017

  • Upton G, Fingleton B (1985) Spatial data analysis by example volume1: point pattern and quantitative data. Wiley, New York

    MATH  Google Scholar 

  • Vieira MR, Bakalov P, Tsotras VJ (2009) On-line discovery of flock patterns in spatio-temporal data. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems—GIS’09 286. https://doi.org/10.1145/1653771.1653812

  • Wang X, Wang J (2010) Using clustering methods in geospatial information systems. GEOMATICA 64:347–361

    Google Scholar 

  • Wang M., Wang A, Li A (2006) Mining spatial-temporal clusters from geo-databases. In: International conference on advanced data mining and applications. Springer Berlin, pp 263–270

  • Weingessel A, Dimitriadou E, Dolničar S (1999) An examination of indexes for determining the number of clusters in binary data sets. Psychometrika 67:1–21. https://doi.org/10.1007/bf02294713

    Article  MathSciNet  MATH  Google Scholar 

  • Y—U.S. Forest Service https://www.fs.fed.us/pnw/starkey/. Accessed 7 Dec 2016

  • Yao X (2003). Research issues in spatio-temporal data mining. A white paper submitted to the University Consortium for Geographic Information Science (UCGIS) workshop on geospatial visualization and knowledge discovery, Lansdowne, Virginia, Nov. 18–20

  • Zaghlool E, ElKaffas S, Saad, A (2015) A density-based clustering of spatio-temporal data. In: Rocha A, Correia A, Costanzo S, Reis L (eds) New contributions in information systems and technologies. Advances in Intelligent Systems and Computing, vol 354. Springer, Cham, pp 41–50. https://doi.org/10.1007/978-3-319-16528-8_5

    Chapter  Google Scholar 

  • Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering databases method for very large. ACM SIGMOD Int Conf Manag Data 1:103–114. https://doi.org/10.1145/233269.233324

    Article  Google Scholar 

  • Zhang P, Huang Y, Shekhar S, Kumar V (2003) Correlation analysis of spatial time series datasets: a filter-and-refine approach. Adv Knowl Discov Data Mining. https://doi.org/10.1007/3-540-36175-8_53

    Article  MATH  Google Scholar 

  • Zhang D, Lee K, Lee I (2018) Hierarchical trajectory clustering for spatio-temporal periodic pattern mining. Expert Syst Appl 92:1–11

    Article  Google Scholar 

  • Zhao Q, Xu M, Fränti P (2009) Sum-of-square based cluster validity index and significance analysis. In: Proceedings of the 17th international conference on adaptive structures and natural computing algorithms, pp 313–322

  • Zheng Y, Zhang L, Xie X, Ma W-Y (2009) Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th international conference on World wide web - WWW’09 791. https://doi.org/10.1145/1526709.1526816

  • Zhou P, Salzberg B (2008) The hB-pi* Tree: an optimized comprehensive access method for frequent-update multi-dimensional point data. In: Ludäscher B., Mamoulis N. (eds) Scientific and statistical database management. SSDBM 2008 (Lecture notes in computer science), vol 5069. Springer, Berlin

Download references

Acknowledgements

This work is supported by Ministry of Electronics and Information Technology, Government of India under the Visvesvaraya Ph.D. scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.Y., Ahmad, A., Khan, S.S. et al. Spatiotemporal clustering: a review. Artif Intell Rev 53, 2381–2423 (2020). https://doi.org/10.1007/s10462-019-09736-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-019-09736-1

Keywords

Navigation