[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Counting for Satisfiability by Inverting Resolution

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

We present a new algorithm for counting truth assignments of a clausal formula using inverse propositional resolution and its associated normalization rules. The idea is opposite of the classical resolution, and is achieved by constructing in a bottom-up manner a computation graph. This means that we successively add complementary literals to generate new bigger clauses instead of solving them. Next, we make a comparison between the classical and inverse resolution, followed by a new algorithm which combines these two techniques for solving the SAT problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Andrei, Ş. (1995). (submitted: 1993, reported in talks: 1991) The Determinant of the Boolean Formulae, Analele Universit a _ t ii Bucureşti, Informatic a Ano. XLIV, 83–92, Rom a nia, URL: http: //www. infoiasi. ro/stefan/anale95. pdf.

    Google Scholar 

  • Andrei, Ş. (1999). Weak Equivalence in Propositional Calculus. In Todiraşcu, A. (ed. ), Proceedings of European Summer School on Logic, Language and Information, August 9–20, 79–89, Universiteit Utrecht: The Netherlands, URL-s: http://www.let.uu.nl/esslli/student-session.html, and http://www.folli.uva.nl/CD/1999/ library/pdf/andrei.pdf.

    Google Scholar 

  • Andrei, Ş., Kudlek, M., & Masalagiu, C. (2001). The Resolution Principle. Complexity Estimations for the Class of Propositional Calculus Formulae, Research Report FBI-HH-B-233, 1–16. Fachbereich Informatik, Universitat Hamburg.

  • Andrei, Ş, Grigoraş, G., Kudlek, M. & Masalagiu, C. (2001). On the Complexity of Propositional Calculus Formulae. Analele Ştiint ¸ifice ale Facult a t ¸ii de Informatic a Tomul X, 27–43. ''A. I. Cuza ''University: Iaşi, România, URL: http: //www. infoias. ro/stefan/anale2001. pdf.

    Google Scholar 

  • Birbaum, E. & Lozinskii, E. L. (1999). The Good Old Davis-Putnam Procedure Helps Counting Models. Journal of Artificial Intelligence Research 10: 457–477.

    Google Scholar 

  • Beame, P., Karp, R., Pitassi, T. & Saks, M. (2002). The Efficiency of Resolution and Davis-Putnam Procedures, SIAM Journal of Computing 31(4): 1048–1075.

    Google Scholar 

  • Chang, C. L. & Lee, R. C. T. (1973). Symbolic Logic and Mechanical Theorem Proving. Academic Press: New York.

    Google Scholar 

  • Cheng, A. M. K. (2002). Real-time systems. Scheduling, Analysis, and Verication. Wiley Interscience.

  • Clay Mathematics Institute: (2000). http: //www. claymath. org/Millennium_Prize_Problems/P_vs_NP/

  • Cook, S. A. (1971). The complexity of theorem-proving procedures, Proceeding of the Third Annual ACM Symposium Theory of Computing, 151–158.

  • De Raedt, L. (1992) Interactive Theory Revision: An Inductive Logic Programming Approach. Academic Press: London.

    Google Scholar 

  • Davis, M. & Putnam, H. (1960). A Computing Procedure for Quanti cation Theory. Journal of the ACM 7: 201–215.

    Google Scholar 

  • Dahllof, V., Jonsson, P. & Wahlstrom, M. (2002). Counting Satisfying Assignments in 2-SATand 3-SAT, COCOON-2002 LNC82387, Ibarra, O. & Zhang, L. (eds.), 535–543.

  • Deng, X., Lee, C. H., Zhao, Y. & Zhu, H. (2002). (2+f(n))-SAT and Its Properties, COCOON-2002 LNC8 2387, Ibarra, O. & Zhang, L. (eds. ), 28–36.

  • Dowling, W. F. & Gallier, J. H. (1984). Linear-time Algorithms for Testing the Satis-ability of Propositional Horn Formulae, Journal of Logic Programming 3: 267–284.

    Google Scholar 

  • Dubois, O. (1991). Counting the Number of Solutions for Instances of Satisi ability. Theoretical Computer Science 81: 49–64.

    Google Scholar 

  • Gallier, J. (1987). Logic for Computer Science (Foundations of Automatic Theorem Proving). Harper and Row Publishers: New York.

    Google Scholar 

  • Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco: CA.

    Google Scholar 

  • Iwana, K. (1989). CNF Satis ability Test by Counting and Polynomial Average Time, Siam Journal of Computing 18(2): 385–391.

    Google Scholar 

  • Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In R. E. Miller & J. W. Thatcher (eds. ), Complexity of Computer Computations, 85–103. Plenum Press: NewYork.

    Google Scholar 

  • Jahanian, F. & Mok, A. (1986). Safety Analysis of Timing Properties in Real-Time Systems. IEEE Transactions on Software Engineering SE-12(9): 890–904.

    Google Scholar 

  • Jahanian, F. & Mok, A. (1987). A Graph-Theoretic Approach for Timing Analysis and its Implementation. IEEE Transactions on Computers C-36, (8): 961–975.

    Google Scholar 

  • Lavrač, N. & Džeroski, S. (1994). Inductive Logic Programming: Techniques and Applications. Ellis Horwood: New York.

    Google Scholar 

  • Levin, L. A. (1973). (submitted: 1972, reported in talks: 1971) Universal Search Problems. Problemy Peredachi Informatsii = Problems of Information Transmission 9 (3): 265–266.

    Google Scholar 

  • Lloyd, J. W. (1984). Foundations of Logic Programming. Springer-Verlag: Berlin, Germany.

    Google Scholar 

  • Lozinskii, E. (1992). Counting Propositional Models. Information Processing Letters 41 (6): 327–332.

    Google Scholar 

  • Masalagiu, C. & Andrei, Ş. (2000). Duality in Resolution, Analele Universit a _ t ii Bu-cure şti, Informatic a Ano. XLIX, 97–112. Rom a nia, URL: http: //www. infoiasi. ro/ stefan/anale2000. pdf.

    Google Scholar 

  • Muggleton, S. & De Raedt, L. (1994). Inductive logic programming: Theory and Methods. Journal of Logic Programming, 19 (20): 629–679.

    Google Scholar 

  • Muggleton, S. (1992). Inductive Logic Programming. (ed. ). Academic Press: London.

    Google Scholar 

  • Muggleton, S. (1995). Inverse Entailment and Progol. New Generation Computing, Special Issue on Inductive Logic Programming, 13 (3–4): 245–286.

    Google Scholar 

  • Page, D. (2000). ILP: Just Do It. Lloyd, J. Dahl, Kerber, Lau, Palamidissi, Pereira, Sagiv, Stuckey (eds), 25–40. Proceedings of Computational Logic, Berlin: Springer, LNAI 1861, Also appears in Proceedings of ILP '2000, Cussens J. & Frisch, A. (eds), 3–18. Berlin: Springer; LNAI 1866.

    Google Scholar 

  • Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley: USA.

    Google Scholar 

  • Purdom, P. 1989, Random Satis ability Problems, International Workshop on Discrete Algorithms and Complexity 89-AL-12, 253–259. IECE Japan.

    Google Scholar 

  • Robinson, J. A. (1965). A Machine Oriented Logic Based on the Resolution Principle. Journal of the ACM 12: 23–41.

    Google Scholar 

  • Roth, D. On the Hardness of Approximate Reasoning. Artificial Intelligence 82: 273–302.

  • Simon, J. (1975). On some central problems in computational complexity, Doctoral Thesis. Dept. of Computer Science, Cornell University: Ithaca, NY.

    Google Scholar 

  • Simovici, D. A. & Tenney, R. L. (1999). Theory of Formal Languages with Applications. World Scientific: Singapore.

    Google Scholar 

  • Tanaka, Y. (1991). A Dual Algorithm for the Satis ability Problem. Information Processing Letters 37: 85–89.

    Google Scholar 

  • Trakhtenbrot, B. A. (1984). A Survey of Russian Approaches to Perebor (brute-force search)algorithms. Annals of the History of Computing 6(4): 384–400.

    Google Scholar 

  • Valiant, L. G. (1979). The Complexity of Enumeration and Reliability Problems. SIAM Journal on Computing 8: 410–421.

    Google Scholar 

  • Valiant, L. G. (1979). The Complexity of Computing the Permanent. Theoretical Computer Science 8: 189–201.

    Google Scholar 

  • Vlada, M. (1998). An Efficient Algorithm for Testing Propositional Formulas. Computers and Artificial Intelligence 17(4): 383–391.

    Google Scholar 

  • Vlada, M. (2001). Algorithms for Testing Satis ability Formulas. Artificial Intelligence Review 15: 153–163.

    Google Scholar 

  • Zhang, W. (1996). Number of Models and Satis ability of Sets of Clauses. Theoretical Computer Science 155: 277–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrei, Ş. Counting for Satisfiability by Inverting Resolution. Artificial Intelligence Review 22, 339–366 (2004). https://doi.org/10.1007/s10462-004-4329-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-004-4329-2

Navigation