Abstract
We present a new algorithm for counting truth assignments of a clausal formula using inverse propositional resolution and its associated normalization rules. The idea is opposite of the classical resolution, and is achieved by constructing in a bottom-up manner a computation graph. This means that we successively add complementary literals to generate new bigger clauses instead of solving them. Next, we make a comparison between the classical and inverse resolution, followed by a new algorithm which combines these two techniques for solving the SAT problem.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andrei, Ş. (1995). (submitted: 1993, reported in talks: 1991) The Determinant of the Boolean Formulae, Analele Universit a _ t ii Bucureşti, Informatic a Ano. XLIV, 83–92, Rom a nia, URL: http: //www. infoiasi. ro/stefan/anale95. pdf.
Andrei, Ş. (1999). Weak Equivalence in Propositional Calculus. In Todiraşcu, A. (ed. ), Proceedings of European Summer School on Logic, Language and Information, August 9–20, 79–89, Universiteit Utrecht: The Netherlands, URL-s: http://www.let.uu.nl/esslli/student-session.html, and http://www.folli.uva.nl/CD/1999/ library/pdf/andrei.pdf.
Andrei, Ş., Kudlek, M., & Masalagiu, C. (2001). The Resolution Principle. Complexity Estimations for the Class of Propositional Calculus Formulae, Research Report FBI-HH-B-233, 1–16. Fachbereich Informatik, Universitat Hamburg.
Andrei, Ş, Grigoraş, G., Kudlek, M. & Masalagiu, C. (2001). On the Complexity of Propositional Calculus Formulae. Analele Ştiint ¸ifice ale Facult a t ¸ii de Informatic a Tomul X, 27–43. ''A. I. Cuza ''University: Iaşi, România, URL: http: //www. infoias. ro/stefan/anale2001. pdf.
Birbaum, E. & Lozinskii, E. L. (1999). The Good Old Davis-Putnam Procedure Helps Counting Models. Journal of Artificial Intelligence Research 10: 457–477.
Beame, P., Karp, R., Pitassi, T. & Saks, M. (2002). The Efficiency of Resolution and Davis-Putnam Procedures, SIAM Journal of Computing 31(4): 1048–1075.
Chang, C. L. & Lee, R. C. T. (1973). Symbolic Logic and Mechanical Theorem Proving. Academic Press: New York.
Cheng, A. M. K. (2002). Real-time systems. Scheduling, Analysis, and Verication. Wiley Interscience.
Clay Mathematics Institute: (2000). http: //www. claymath. org/Millennium_Prize_Problems/P_vs_NP/
Cook, S. A. (1971). The complexity of theorem-proving procedures, Proceeding of the Third Annual ACM Symposium Theory of Computing, 151–158.
De Raedt, L. (1992) Interactive Theory Revision: An Inductive Logic Programming Approach. Academic Press: London.
Davis, M. & Putnam, H. (1960). A Computing Procedure for Quanti cation Theory. Journal of the ACM 7: 201–215.
Dahllof, V., Jonsson, P. & Wahlstrom, M. (2002). Counting Satisfying Assignments in 2-SATand 3-SAT, COCOON-2002 LNC82387, Ibarra, O. & Zhang, L. (eds.), 535–543.
Deng, X., Lee, C. H., Zhao, Y. & Zhu, H. (2002). (2+f(n))-SAT and Its Properties, COCOON-2002 LNC8 2387, Ibarra, O. & Zhang, L. (eds. ), 28–36.
Dowling, W. F. & Gallier, J. H. (1984). Linear-time Algorithms for Testing the Satis-ability of Propositional Horn Formulae, Journal of Logic Programming 3: 267–284.
Dubois, O. (1991). Counting the Number of Solutions for Instances of Satisi ability. Theoretical Computer Science 81: 49–64.
Gallier, J. (1987). Logic for Computer Science (Foundations of Automatic Theorem Proving). Harper and Row Publishers: New York.
Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco: CA.
Iwana, K. (1989). CNF Satis ability Test by Counting and Polynomial Average Time, Siam Journal of Computing 18(2): 385–391.
Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In R. E. Miller & J. W. Thatcher (eds. ), Complexity of Computer Computations, 85–103. Plenum Press: NewYork.
Jahanian, F. & Mok, A. (1986). Safety Analysis of Timing Properties in Real-Time Systems. IEEE Transactions on Software Engineering SE-12(9): 890–904.
Jahanian, F. & Mok, A. (1987). A Graph-Theoretic Approach for Timing Analysis and its Implementation. IEEE Transactions on Computers C-36, (8): 961–975.
Lavrač, N. & Džeroski, S. (1994). Inductive Logic Programming: Techniques and Applications. Ellis Horwood: New York.
Levin, L. A. (1973). (submitted: 1972, reported in talks: 1971) Universal Search Problems. Problemy Peredachi Informatsii = Problems of Information Transmission 9 (3): 265–266.
Lloyd, J. W. (1984). Foundations of Logic Programming. Springer-Verlag: Berlin, Germany.
Lozinskii, E. (1992). Counting Propositional Models. Information Processing Letters 41 (6): 327–332.
Masalagiu, C. & Andrei, Ş. (2000). Duality in Resolution, Analele Universit a _ t ii Bu-cure şti, Informatic a Ano. XLIX, 97–112. Rom a nia, URL: http: //www. infoiasi. ro/ stefan/anale2000. pdf.
Muggleton, S. & De Raedt, L. (1994). Inductive logic programming: Theory and Methods. Journal of Logic Programming, 19 (20): 629–679.
Muggleton, S. (1992). Inductive Logic Programming. (ed. ). Academic Press: London.
Muggleton, S. (1995). Inverse Entailment and Progol. New Generation Computing, Special Issue on Inductive Logic Programming, 13 (3–4): 245–286.
Page, D. (2000). ILP: Just Do It. Lloyd, J. Dahl, Kerber, Lau, Palamidissi, Pereira, Sagiv, Stuckey (eds), 25–40. Proceedings of Computational Logic, Berlin: Springer, LNAI 1861, Also appears in Proceedings of ILP '2000, Cussens J. & Frisch, A. (eds), 3–18. Berlin: Springer; LNAI 1866.
Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley: USA.
Purdom, P. 1989, Random Satis ability Problems, International Workshop on Discrete Algorithms and Complexity 89-AL-12, 253–259. IECE Japan.
Robinson, J. A. (1965). A Machine Oriented Logic Based on the Resolution Principle. Journal of the ACM 12: 23–41.
Roth, D. On the Hardness of Approximate Reasoning. Artificial Intelligence 82: 273–302.
Simon, J. (1975). On some central problems in computational complexity, Doctoral Thesis. Dept. of Computer Science, Cornell University: Ithaca, NY.
Simovici, D. A. & Tenney, R. L. (1999). Theory of Formal Languages with Applications. World Scientific: Singapore.
Tanaka, Y. (1991). A Dual Algorithm for the Satis ability Problem. Information Processing Letters 37: 85–89.
Trakhtenbrot, B. A. (1984). A Survey of Russian Approaches to Perebor (brute-force search)algorithms. Annals of the History of Computing 6(4): 384–400.
Valiant, L. G. (1979). The Complexity of Enumeration and Reliability Problems. SIAM Journal on Computing 8: 410–421.
Valiant, L. G. (1979). The Complexity of Computing the Permanent. Theoretical Computer Science 8: 189–201.
Vlada, M. (1998). An Efficient Algorithm for Testing Propositional Formulas. Computers and Artificial Intelligence 17(4): 383–391.
Vlada, M. (2001). Algorithms for Testing Satis ability Formulas. Artificial Intelligence Review 15: 153–163.
Zhang, W. (1996). Number of Models and Satis ability of Sets of Clauses. Theoretical Computer Science 155: 277–288.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Andrei, Ş. Counting for Satisfiability by Inverting Resolution. Artificial Intelligence Review 22, 339–366 (2004). https://doi.org/10.1007/s10462-004-4329-2
Issue Date:
DOI: https://doi.org/10.1007/s10462-004-4329-2