[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Ash’s Theorem on Δ 0 α -Categorical Structures and a Condition for Infinite Δ 0 α -Dimension

  • Published:
Algebra and Logic Aims and scope

An old classical result in computable structure theory is Ash’s theorem stating that for every computable ordinal α ≥ 2, under some additional conditions, a computable structure is Δ 0 α -categorical iff it has a computable Σ α Scott family. We construct a counterexample revealing that the proof of this theorem has a serious error. Moreover, we show how the error can be corrected by revising the proof. In addition, we formulate a sufficient condition under which the Δ 0 α -dimension of a computable structure is infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Log. Found. Math., 144, Elsevier, Amsterdam (2000).

  2. C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, “Generic copies of countable structures,” Ann. Pure Appl. Log., 42, No. 3, 195-205 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Chisholm, “Effective model theory vs. recursive model theory,” J. Sym. Log., 55, No. 3, 1168-1191 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. S. Goncharov, “Autostability and computable families of constructivizations,” Algebra and Logic, 14, No. 6, 392-409 (1975).

    Article  Google Scholar 

  5. S. S. Goncharov, “The quantity of nonautoequivalent constructivizations,” Algebra and Logic, 16, No. 3, 169-185 (1977).

    Article  MathSciNet  Google Scholar 

  6. O. Kudinov, “An autostable 1-decidable model without a computable Scott family of ∃-formulas,” Algebra and Logic 35, No. 4, 255-260 (1996).

    Article  MathSciNet  Google Scholar 

  7. C. J. Ash, Categoricity in hyperarithmetical degrees, Ann. Pure Appl. Log., 34, No. 1, 1-14 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  9. S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, and R. Solomon, “Enumerations in computable structure theory,” Ann. Pure Appl. Log., 136, No. 3, 219-246 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Chisholm, E. B. Fokina, S. S. Goncharov, V. S. Harizanov, J. F. Knight, and S. Quinn, “Intrinsic bounds on complexity and definability at limit levels,” J. Symb. Log., 74, No. 3, 1047-1060 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. S. Goncharov and V. D. Dzgoev, “Autostability of models,” Algebra and Logic, 19, No. 1, 28-37 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. E. Alaev, “Autostable I-algebras,” Algebra and Logic, 43, No. 5, 285-306 (2004).

    Article  MathSciNet  Google Scholar 

  13. S. S. Goncharov, “Autostability of models and Abelian groups,” Algebra and Logic, 19, No. 1, 13-27 (1980).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Alaev.

Additional information

Supported by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-860.2014.1) and by RFBR (project No. 14-01-00376).

Translated from Algebra i Logika, Vol. 54, No. 5, pp. 551-574, September-October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaev, P.E. Ash’s Theorem on Δ 0 α -Categorical Structures and a Condition for Infinite Δ 0 α -Dimension. Algebra Logic 54, 353–369 (2015). https://doi.org/10.1007/s10469-015-9357-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-015-9357-2

Keywords

Navigation