Abstract
This paper is focused on radial-compression of filament-wound composite pipes. An important but frequently disregarded is the issue of the choice of the winding pattern. The influence of the pattern on the strength of pipes is the subject of the investigation. Since the real geometry of filament-wound tubes is complicated researchers use simplified models (especially in “zig-zag” area), which are insufficient to reflect real behavior of tubes. An attempt to investigate a more precise geometry is presented in this work. A python script is used to model the particular areas typical for filament-wound elements. Hashin criterion is used to reflect damage in the material during compression. Results of numerical simulations are discussed and compared with experimental from other researchers. Based on the prepared model – the influence of pattern on the strength of a composite pipe is possible. Although some improvements may be introduced, a satisfactory agreement between the experiment and numerical simulation was achieved.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wang, R., Jiao, W., Liu, W., Yang, F.: A new method for predicting dome thickness of composite pressure vessels. J. Reinf. Plast. Compos. 29, 3345–3352 (2010). https://doi.org/10.1177/0731684410376330
Zu, L., Koussios, S., Beukers, A.: A novel design solution for improving the performance of composite toroidal hydrogen storage tanks. Int. J. Hydrogen Energy. 37, 14343–14350 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.009
Rafiee, R., Torabi, M.A.: Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 185, 573–583 (2018). https://doi.org/10.1016/j.compstruct.2017.11.068
Vasiliev, V. V., Morozov, E. V.: Advanced Mechanics of Composite Materials and Structural Elements. Elsevier Ltd (2018)
Xia, M., Takayanagi, H., Kemmochi, K.: Analysis of multi-layered filament-wound composite pipes under internal pressure. Compos. Struct. 53, 483–491 (2001). https://doi.org/10.1016/S0263-8223(01)00061-7
Soden, P.D., Leadbetter, D., Griggs, P.R., Eckold, G.C.: The strength of a filament wound composite under biaxial loading. Composites. 9, 247–250 (1978). https://doi.org/10.1016/0010-4361(78)90177-5
Bai, J., Seeleuthner, P., Bompard, P.: Mechanical behaviour of ±55° filament-wound glass-fibre/epoxy-resin tubes: I. Microstructural analyses, mechanical behaviour and damage mechanisms of composite tubes under pure tensile loading, pure internal pressure, and combined loading. Compos. Sci. Technol. 57, 141–153 (1997). https://doi.org/10.1016/S0266-3538(96)00124-8
Mian, H.H., Wang, G., Dar, U.A., Zhang, W.: Optimization of composite material system and lay-up to achieve minimum weight pressure vessel. Appl. Compos. Mater. 20, 873–889 (2013). https://doi.org/10.1007/s10443-012-9305-4
Hernández-Moreno, H., Douchin, B., Collombet, F., Choqueuse, D., Davies, P.: Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure. Compos. Sci. Technol. 68, 1015–1024 (2008). https://doi.org/10.1016/j.compscitech.2007.07.020
Almeida, J.H.S., Ribeiro, M.L., Tita, V., Amico, S.C.: Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: Experimental and numerical approaches. Mater. Des. 96, 431–438 (2016). https://doi.org/10.1016/j.matdes.2016.02.054
Shen, C., Han, X.: Damage and failure analysis of filament wound composite structure considering fibre crossover and undulation. Adv. Compos. Lett. 27, 55–70 (2018). https://doi.org/10.1177/096369351802700202
Manoj Prabhakar, M., Rajini, N., Ayrilmis, N., Mayandi, K., Siengchin, S., Senthilkumar, K., Karthikeyan, S., Ismail, S.O.: An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Compos. Struct. 230, (2019). https://doi.org/10.1016/j.compstruct.2019.111419
Almeida Júnior, J.H., Ribeiro, M.L., Tita, V., Amico, S.C.: Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression. Compos. Struct. 160, 204–210 (2017a). https://doi.org/10.1016/j.compstruct.2016.10.036
Mansour, G., Tzikas, K., Tzetzis, D., Korlos, A., Sagris, D., David, K.: Experimental and Numerical Investigation on the Torsional Behaviour of Filament Winding-Manufactured Composite Tubes. Appl. Mech. Mater. 834, 173–178 (2016). https://doi.org/10.4028/www.scientific.net/amm.834.173
Hu, Y., Yang, M., Zhang, J., Song, C., Zhang, W.: Research on torsional capacity of composite drive shaft under clockwise and counter-clockwise torque. Adv. Mech. Eng. 7, 1–7 (2015). https://doi.org/10.1177/1687814015582109
Diniz Melo, J.D., Levy Neto, F., De Araujo Barros, G., De Almeida Mesquita, F.N.: Mechanical behavior of GRP pressure pipes with addition of quartz sand filler. J. Compos. Mater. 45, 717–726 (2011). https://doi.org/10.1177/0021998310385593
Martins, L.A.L., Bastian, F.L., Netto, T.A.: Reviewing some design issues for filament wound composite tubes. Mater. Des. 55, 242–249 (2014). https://doi.org/10.1016/j.matdes.2013.09.059
Robert, M., Fam, A.: Long-term performance of GFRP tubes filled with concrete and subjected to salt solution. J. Compos. Constr. 16, 217–224 (2012). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000251
Son, J.K., Fam, A.: Finite element modeling of hollow and concrete-filled fiber composite tubes in flexure: Model development, verification and investigation of tube parameters. Eng. Struct. 30, 2656–2666 (2008). https://doi.org/10.1016/j.engstruct.2008.02.014
Qasrawi, Y., Heffernan, P.J., Fam, A.: Dynamic behaviour of concrete filled FRP tubes subjected to impact loading. Eng. Struct. 100, 212–225 (2015a). https://doi.org/10.1016/j.engstruct.2015.06.012
Qasrawi, Y., Heffernan, P.J., Fam, A.: Performance of concrete-filled FRP tubes under field close-in blast loading. J. Compos. Constr. 19, 1–12 (2015b). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000502
Eggers, F., Almeida, J.H.S., Azevedo, C.B., Amico, S.C.: Mechanical response of filament wound composite rings under tension and compression. Polym. Test. 78, (2019). https://doi.org/10.1016/j.polymertesting.2019.105951
Zu, L., Xu, H., Wang, H., Zhang, B., Zi, B.: Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding. Compos. Struct. 207, 41–52 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2018.09.007
Almeida Júnior, J.H., Ribeiro, M.L., Tita, V., Amico, S.C.: Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage. Compos. Struct. 178, 20–26 (2017b). https://doi.org/10.1016/j.compstruct.2017.07.054
Rousseau, J., Perreux, D., Verdière, N.: The infuence of winding patterns on the damage behaviour of flament-wound pipes. Compos. Sci. Technol. 59, 1439–1449 (1999). https://doi.org/10.1016/S0168-583X(00)00540-1
Morozov, E.V.: The effect of filament-winding mosaic patterns on the strength of thin-walled composite shells. Compos. Struct. 76, 123–129 (2006). https://doi.org/10.1016/j.compstruct.2006.06.018
Azevedo, C.B., Humberto, J., Almeida, S., Flores, H.F., Eggers, F., Amico, S.C.: Influence of mosaic pattern on hygrothermally-aged filament wound composite cylinders under axial compression. J. Compos. Mater. 54, 2651–2659 (2020). https://doi.org/10.1177/0021998319899144
Shen, C., Han, X., Guo, Z.: A new method for calculating the stiffness of filament wound composites considering the fibre undulation and crossover. Adv. Compos. Lett. 23, 88–95 (2014). https://doi.org/10.1177/096369351402300402
Błażejewski, W.: Kompozytowe zbiorniki wysokociśnieniowe wzmocnione włóknami według wzorów mozaikowych. Oficyna Wydawnicza Politechniki Wrocławskiej (2013)
Hashin, Z.: Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 47, 329–334 (1980). https://doi.org/10.1115/1.3153664
Hashin, Z., Rotem, A.: A Fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos. Mater. 7, 448–464 (1973). https://doi.org/10.1177/002199837300700404
Barbero, E.J., Cosso, F.A., Roman, R., Weadon, T.L.: Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates. Compos. Part B Eng. 46, 211–220 (2013). https://doi.org/10.1016/j.compositesb.2012.09.069
Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf. 38, 2333–2341 (2007). https://doi.org/10.1016/j.compositesa.2007.01.017
Lisbôa, T.V., Almeida, J.H.S., Dalibor, I.H., Spickenheuer, A., Marczak, R.J., Amico, S.C.: The role of winding pattern on filament wound composite cylinders under radial compression. Polym. Compos. 41, 2446–2454 (2020). https://doi.org/10.1002/pc.25548
Abaqus 6.14, Analysis User’s Manual, Dassault System, (2014)
Dalibor, I.H., Lisbôa, T.V., Marczak, R.J., Amico, S.C.: Optimum slippage dependent, non-geodesic fiber path determination for a filament wound composite nozzle. Eur. J. Mech. A/Solids. 82, 103994 (2020). https://doi.org/10.1016/j.euromechsol.2020.103994
Girão Coelho, A.M., Toby Mottram, J., Harries, K.A.: Finite element guidelines for simulation of fibre-tension dominated failures in composite materials validated by case studies. Compos. Struct. 126, 299–313 (2015). https://doi.org/10.1016/j.compstruct.2015.02.071
Acknowledgement
Calculations have been carried out in Wroclaw Centre for Networking and Supercomputing (http://www.wcss.pl), grant No. 27220656.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Stabla, P., Smolnicki, M. & Błażejewski, W. The Numerical Approach to Mosaic Patterns in Filament-Wound Composite Pipes. Appl Compos Mater 28, 181–199 (2021). https://doi.org/10.1007/s10443-020-09861-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10443-020-09861-z