[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Numerical Approach to Mosaic Patterns in Filament-Wound Composite Pipes

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper is focused on radial-compression of filament-wound composite pipes. An important but frequently disregarded is the issue of the choice of the winding pattern. The influence of the pattern on the strength of pipes is the subject of the investigation. Since the real geometry of filament-wound tubes is complicated researchers use simplified models (especially in “zig-zag” area), which are insufficient to reflect real behavior of tubes. An attempt to investigate a more precise geometry is presented in this work. A python script is used to model the particular areas typical for filament-wound elements. Hashin criterion is used to reflect damage in the material during compression. Results of numerical simulations are discussed and compared with experimental from other researchers. Based on the prepared model – the influence of pattern on the strength of a composite pipe is possible. Although some improvements may be introduced, a satisfactory agreement between the experiment and numerical simulation was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang, R., Jiao, W., Liu, W., Yang, F.: A new method for predicting dome thickness of composite pressure vessels. J. Reinf. Plast. Compos. 29, 3345–3352 (2010). https://doi.org/10.1177/0731684410376330

    Article  CAS  Google Scholar 

  2. Zu, L., Koussios, S., Beukers, A.: A novel design solution for improving the performance of composite toroidal hydrogen storage tanks. Int. J. Hydrogen Energy. 37, 14343–14350 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.009

    Article  CAS  Google Scholar 

  3. Rafiee, R., Torabi, M.A.: Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 185, 573–583 (2018). https://doi.org/10.1016/j.compstruct.2017.11.068

    Article  Google Scholar 

  4. Vasiliev, V. V., Morozov, E. V.: Advanced Mechanics of Composite Materials and Structural Elements. Elsevier Ltd (2018)

  5. Xia, M., Takayanagi, H., Kemmochi, K.: Analysis of multi-layered filament-wound composite pipes under internal pressure. Compos. Struct. 53, 483–491 (2001). https://doi.org/10.1016/S0263-8223(01)00061-7

    Article  Google Scholar 

  6. Soden, P.D., Leadbetter, D., Griggs, P.R., Eckold, G.C.: The strength of a filament wound composite under biaxial loading. Composites. 9, 247–250 (1978). https://doi.org/10.1016/0010-4361(78)90177-5

    Article  CAS  Google Scholar 

  7. Bai, J., Seeleuthner, P., Bompard, P.: Mechanical behaviour of ±55° filament-wound glass-fibre/epoxy-resin tubes: I. Microstructural analyses, mechanical behaviour and damage mechanisms of composite tubes under pure tensile loading, pure internal pressure, and combined loading. Compos. Sci. Technol. 57, 141–153 (1997). https://doi.org/10.1016/S0266-3538(96)00124-8

  8. Mian, H.H., Wang, G., Dar, U.A., Zhang, W.: Optimization of composite material system and lay-up to achieve minimum weight pressure vessel. Appl. Compos. Mater. 20, 873–889 (2013). https://doi.org/10.1007/s10443-012-9305-4

    Article  Google Scholar 

  9. Hernández-Moreno, H., Douchin, B., Collombet, F., Choqueuse, D., Davies, P.: Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure. Compos. Sci. Technol. 68, 1015–1024 (2008). https://doi.org/10.1016/j.compscitech.2007.07.020

    Article  CAS  Google Scholar 

  10. Almeida, J.H.S., Ribeiro, M.L., Tita, V., Amico, S.C.: Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: Experimental and numerical approaches. Mater. Des. 96, 431–438 (2016). https://doi.org/10.1016/j.matdes.2016.02.054

    Article  CAS  Google Scholar 

  11. Shen, C., Han, X.: Damage and failure analysis of filament wound composite structure considering fibre crossover and undulation. Adv. Compos. Lett. 27, 55–70 (2018). https://doi.org/10.1177/096369351802700202

    Article  Google Scholar 

  12. Manoj Prabhakar, M., Rajini, N., Ayrilmis, N., Mayandi, K., Siengchin, S., Senthilkumar, K., Karthikeyan, S., Ismail, S.O.: An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Compos. Struct. 230, (2019). https://doi.org/10.1016/j.compstruct.2019.111419

  13. Almeida Júnior, J.H., Ribeiro, M.L., Tita, V., Amico, S.C.: Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression. Compos. Struct. 160, 204–210 (2017a). https://doi.org/10.1016/j.compstruct.2016.10.036

    Article  Google Scholar 

  14. Mansour, G., Tzikas, K., Tzetzis, D., Korlos, A., Sagris, D., David, K.: Experimental and Numerical Investigation on the Torsional Behaviour of Filament Winding-Manufactured Composite Tubes. Appl. Mech. Mater. 834, 173–178 (2016). https://doi.org/10.4028/www.scientific.net/amm.834.173

    Article  Google Scholar 

  15. Hu, Y., Yang, M., Zhang, J., Song, C., Zhang, W.: Research on torsional capacity of composite drive shaft under clockwise and counter-clockwise torque. Adv. Mech. Eng. 7, 1–7 (2015). https://doi.org/10.1177/1687814015582109

    Article  CAS  Google Scholar 

  16. Diniz Melo, J.D., Levy Neto, F., De Araujo Barros, G., De Almeida Mesquita, F.N.: Mechanical behavior of GRP pressure pipes with addition of quartz sand filler. J. Compos. Mater. 45, 717–726 (2011). https://doi.org/10.1177/0021998310385593

    Article  Google Scholar 

  17. Martins, L.A.L., Bastian, F.L., Netto, T.A.: Reviewing some design issues for filament wound composite tubes. Mater. Des. 55, 242–249 (2014). https://doi.org/10.1016/j.matdes.2013.09.059

    Article  Google Scholar 

  18. Robert, M., Fam, A.: Long-term performance of GFRP tubes filled with concrete and subjected to salt solution. J. Compos. Constr. 16, 217–224 (2012). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000251

    Article  CAS  Google Scholar 

  19. Son, J.K., Fam, A.: Finite element modeling of hollow and concrete-filled fiber composite tubes in flexure: Model development, verification and investigation of tube parameters. Eng. Struct. 30, 2656–2666 (2008). https://doi.org/10.1016/j.engstruct.2008.02.014

    Article  Google Scholar 

  20. Qasrawi, Y., Heffernan, P.J., Fam, A.: Dynamic behaviour of concrete filled FRP tubes subjected to impact loading. Eng. Struct. 100, 212–225 (2015a). https://doi.org/10.1016/j.engstruct.2015.06.012

    Article  Google Scholar 

  21. Qasrawi, Y., Heffernan, P.J., Fam, A.: Performance of concrete-filled FRP tubes under field close-in blast loading. J. Compos. Constr. 19, 1–12 (2015b). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000502

    Article  Google Scholar 

  22. Eggers, F., Almeida, J.H.S., Azevedo, C.B., Amico, S.C.: Mechanical response of filament wound composite rings under tension and compression. Polym. Test. 78, (2019). https://doi.org/10.1016/j.polymertesting.2019.105951

  23. Zu, L., Xu, H., Wang, H., Zhang, B., Zi, B.: Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding. Compos. Struct. 207, 41–52 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2018.09.007

    Article  Google Scholar 

  24. Almeida Júnior, J.H., Ribeiro, M.L., Tita, V., Amico, S.C.: Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage. Compos. Struct. 178, 20–26 (2017b). https://doi.org/10.1016/j.compstruct.2017.07.054

    Article  Google Scholar 

  25. Rousseau, J., Perreux, D., Verdière, N.: The infuence of winding patterns on the damage behaviour of flament-wound pipes. Compos. Sci. Technol. 59, 1439–1449 (1999). https://doi.org/10.1016/S0168-583X(00)00540-1

    Article  CAS  Google Scholar 

  26. Morozov, E.V.: The effect of filament-winding mosaic patterns on the strength of thin-walled composite shells. Compos. Struct. 76, 123–129 (2006). https://doi.org/10.1016/j.compstruct.2006.06.018

    Article  Google Scholar 

  27. Azevedo, C.B., Humberto, J., Almeida, S., Flores, H.F., Eggers, F., Amico, S.C.: Influence of mosaic pattern on hygrothermally-aged filament wound composite cylinders under axial compression. J. Compos. Mater. 54, 2651–2659 (2020). https://doi.org/10.1177/0021998319899144

    Article  CAS  Google Scholar 

  28. Shen, C., Han, X., Guo, Z.: A new method for calculating the stiffness of filament wound composites considering the fibre undulation and crossover. Adv. Compos. Lett. 23, 88–95 (2014). https://doi.org/10.1177/096369351402300402

    Article  Google Scholar 

  29. Błażejewski, W.: Kompozytowe zbiorniki wysokociśnieniowe wzmocnione włóknami według wzorów mozaikowych. Oficyna Wydawnicza Politechniki Wrocławskiej (2013)

  30. Hashin, Z.: Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 47, 329–334 (1980). https://doi.org/10.1115/1.3153664

    Article  Google Scholar 

  31. Hashin, Z., Rotem, A.: A Fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos. Mater. 7, 448–464 (1973). https://doi.org/10.1177/002199837300700404

    Article  Google Scholar 

  32. Barbero, E.J., Cosso, F.A., Roman, R., Weadon, T.L.: Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates. Compos. Part B Eng. 46, 211–220 (2013). https://doi.org/10.1016/j.compositesb.2012.09.069

    Article  CAS  Google Scholar 

  33. Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf. 38, 2333–2341 (2007). https://doi.org/10.1016/j.compositesa.2007.01.017

    Article  CAS  Google Scholar 

  34. Lisbôa, T.V., Almeida, J.H.S., Dalibor, I.H., Spickenheuer, A., Marczak, R.J., Amico, S.C.: The role of winding pattern on filament wound composite cylinders under radial compression. Polym. Compos. 41, 2446–2454 (2020). https://doi.org/10.1002/pc.25548

    Article  CAS  Google Scholar 

  35. Abaqus 6.14, Analysis User’s Manual, Dassault System, (2014)

  36. Dalibor, I.H., Lisbôa, T.V., Marczak, R.J., Amico, S.C.: Optimum slippage dependent, non-geodesic fiber path determination for a filament wound composite nozzle. Eur. J. Mech. A/Solids. 82, 103994 (2020). https://doi.org/10.1016/j.euromechsol.2020.103994

    Article  Google Scholar 

  37. Girão Coelho, A.M., Toby Mottram, J., Harries, K.A.: Finite element guidelines for simulation of fibre-tension dominated failures in composite materials validated by case studies. Compos. Struct. 126, 299–313 (2015). https://doi.org/10.1016/j.compstruct.2015.02.071

    Article  Google Scholar 

Download references

Acknowledgement

Calculations have been carried out in Wroclaw Centre for Networking and Supercomputing (http://www.wcss.pl), grant No. 27220656.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Stabla.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stabla, P., Smolnicki, M. & Błażejewski, W. The Numerical Approach to Mosaic Patterns in Filament-Wound Composite Pipes. Appl Compos Mater 28, 181–199 (2021). https://doi.org/10.1007/s10443-020-09861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09861-z

Keywords