[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Transportation Inequalities Under Uniform Metric for a Stochastic Heat Equation Driven by Time-White and Space-Colored Noise

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we prove transportation inequalities on the space of continuous paths with respect to the uniform metric, for the law of the solution to a stochastic heat equation defined on \([0,T]\times [0,1]^{d}\). This equation is driven by the Gaussian noise, white in time and colored in space. The proof is based on a new moment inequality under the uniform metric for the stochastic convolution with respect to the time-white and space-colored noise, which is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-hussein, A.: Martingale representation theorem in infinite dimensions. Arab J. Math. Sci. 10(1), 1–18 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften, vol. 348. Springer, Cham (2014)

    Book  Google Scholar 

  3. Bao, J., Wang, F.-Y., Yuan, C.: Transportation cost inequalities for neutral functional stochastic equations. Z. Anal. Anwend. 32(4), 457–475 (2013)

    Article  MathSciNet  Google Scholar 

  4. van den Berg, M.: Gaussian bounds for the Dirichlet heat kernel. J. Funct. Anal. 88(2), 267–278 (1990)

    Article  MathSciNet  Google Scholar 

  5. Boufoussi, B., Hajji, S.: Transportation inequalities for stochastic heat equations. Stat. Probab. Lett. 139, 75–83 (2018)

    Article  MathSciNet  Google Scholar 

  6. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces pertured by a bounded measurable drift. Ann. Probab. 41(5), 3306–3344 (2013)

    Article  MathSciNet  Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 152. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  8. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e’s. Electron. J. Probab. 4, 1–29 (1999)

    Article  MathSciNet  Google Scholar 

  9. Dalang, R.C., Quer-Sardanyons, L.: Stochastic integrals for spde’s: a comparison. Expo. Math. 29(1), 67–109 (2011)

    Article  MathSciNet  Google Scholar 

  10. Djellout, H., Guillin, A., Wu, L.: Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32, 2702–2732 (2004)

    Article  MathSciNet  Google Scholar 

  11. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  12. Feyel, D., Üstünel, A.S.: Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Relat. Fields 128(3), 347–385 (2004)

    Article  Google Scholar 

  13. Foondun, M., Khoshnevisan, D.: On the stochastic heat equation with spatially-colored random forcing. Trans. Am. Math. Soc. 365, 409–458 (2013)

    Article  MathSciNet  Google Scholar 

  14. Gozlan, N.: Transport inequalities and concentration of measure. ESAIM Proc. Surv. 51, 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  15. Li, Y., Wang, X.: Transportation cost-information inequality for stochastic wave equation. Acta Appl. Math. (2020). https://doi.org/10.1007/s10440-019-00292-y. To appear

    Article  MathSciNet  Google Scholar 

  16. Márquez-Carreras, D., Sarrà, M.: Large deviation principle for a stochastic heat equation with spatially correlated noise. Electron. J. Probab. 8, 1–39 (2003)

    Article  MathSciNet  Google Scholar 

  17. Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 119. American Mathematical Society, Providence, RI (2014)

    Book  Google Scholar 

  18. Khoshnevisan, D., Sarantsev, A.: Talagrand concentration inequalities for stochastic partial differential equations. Stoch PDE: Anal. Comp. 7(4), 679–698 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lacker, D.: Liquidity, risk measures, and concentration of measure. Math. Oper. Res. 43(3), 813–837 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  21. Li, Y., Wang, R., Zhang, S.: Moderate deviations for a stochastic heat equation with spatially correlated noise. Acta Appl. Math. 139, 59–80 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ma, Y., Wang, R.: Transportation cost inequalities for stochastic reaction-diffusion equations with Lévy noises and non-Lipschitz reaction terms. Acta Math. Appl. Sin. Engl. Ser. 36(2), 121–136 (2020)

    Article  Google Scholar 

  23. Massart, P.: Concentration Inequalities and Model Selection. Lecture Notes in Mathematics, vol. 1896. Springer, Berlin (2007)

    MATH  Google Scholar 

  24. Pardoux, E., Rascanu, A.: Backward stochastic variational inequalities. Stoch. Stoch. Rep. 67, 159–167 (1999)

    Article  MathSciNet  Google Scholar 

  25. Riedel, S.: Transportation-cost inequalities for diffusions driven by Gaussian processes. Electron. J. Probab. 22, 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  26. Saussereau, B.: Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion. Bernoulli 18(1), 1–23 (2012)

    Article  MathSciNet  Google Scholar 

  27. Shang, S., Zhang, T.: Talagrand concentration inequalities for stochastic heat-type equations under uniform distance. Electron. J. Probab. 24(129), 1–15 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Talagrand, M.: Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6(3), 587–600 (1996)

    Article  MathSciNet  Google Scholar 

  29. Villani, C.: Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Book  Google Scholar 

  30. Walsh, J.: An Introduction to Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1180. Springer, Berlin (1986)

    MATH  Google Scholar 

  31. Wang, F.-Y., Zhang, T.: Talagrand inequality on free path space and application to stochastic reaction diffusion equations (2019). arXiv:1906.07543v1

  32. Wu, L., Zhang, Z.: Talagrand’s \(T_{2}\)-transportation inequality w.r.t. a uniform metric for diffusions. Acta Math. Appl. Sin. Engl. Ser. 20(3), 357–364 (2004)

    Article  MathSciNet  Google Scholar 

  33. Wu, L., Zhang, Z.: Talagrand’s \(T_{2}\)-transportation inequality and log-Sobolev inequality for dissipative SPDEs and applications to reaction-diffusion equations. Chin. Ann. Math., Ser. B 27(3), 243–262 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

S. Shang is supported by the Fundamental Research Funds for the Central Universities (WK0010000057), Project funded by China Postdoctoral Science Foundation (2019M652174). R. Wang is supported by National Natural Science Foundation of China (11871382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To make reading easier, we present here some results on the kernel \(G\) associated with equation (1.8).

Let

$$ H_{t}(x):=\left (\frac{1}{4\pi t}\right )^{\frac{d}{2}}\exp \left (- \frac{|x|^{2}}{4t}\right ), \quad x\in \mathbb {R}^{d},\ t>0. $$

From Lemma 7 of [4], we have

$$\begin{aligned} G_{t} (x,y) \leqslant \ & H_{t}(x-y), \quad \forall t>0, x,y\in [0,1]^{d}. \end{aligned}$$
(4.51)

Hence, it is easy to see that

$$\begin{aligned} \int _{[0,1]^{d}} G_{t}(x,y) dy < & 1, \end{aligned}$$
(4.52)
$$\begin{aligned} \int _{[0,1]^{d}} G_{t}(x,y)^{2}\,dy < & \sup _{y\in [0,1]^{d}}G_{t}(x,y) \times \int _{[0,1]^{d}} G_{t}(x,y)\,dy < (4\pi )^{-\frac{d}{2}} t^{- \frac{d}{2}}. \end{aligned}$$
(4.53)

Lemma 4.1

Suppose hypothesis \((H_{\eta })\)holds. Then for any \(t> 0\)and \(x\in [0,1]^{d}\),

$$\begin{aligned} \| G_{t} (x,\cdot )\|_{\mathcal {H}}^{2} \leqslant K_{\eta } \left (1\vee \left ( \frac{\eta }{8\pi ^{2} }\right )^{\eta } t^{-\eta }\right ), \end{aligned}$$
(4.54)

where \(K_{\eta }\)is the constant in (1.6). Consequently, we have

$$\begin{aligned} \int _{0}^{T}\| G_{t} (x,\cdot )\|_{\mathcal {H}}^{2}dt \leqslant C_{G, T, \eta }, \quad \forall x\in [0,1]^{d} , \end{aligned}$$
(4.55)

where

$$\begin{aligned} C_{G, T, \eta }:= \left \{ \textstyle\begin{array}{l@{\quad }l} (1-\eta )^{-1}K_{\eta }\left (\frac{\eta }{8\pi ^{2}}\right )^{\eta } T^{1- \eta }, & \textit{if}\ T\leqslant \frac{\eta }{8\pi ^{2}}; \\ K_{\eta } T+\frac{\eta ^{2}}{8\pi ^{2}(1-\eta )}, & \textit{if}\ T > \frac{\eta }{8\pi ^{2}}. \end{array}\displaystyle \right . \end{aligned}$$
(4.56)

Proof

By (2.11) and (4.51), we have for any \(t>0\),

$$\begin{aligned} \|G_{t}(x,\cdot )\|_{\mathcal {H}}^{2} =&\int _{[0,1]^{d}}dy_{1}\int _{[0,1]^{d}}dy_{2} G_{t}(x,y_{1})G_{t}(x,y_{2}) f(y_{1}-y_{2}) \\ \leqslant & \int _{\mathbb{R}^{d}}dy_{1}\int _{\mathbb{R}^{d}}dy_{2} H_{t}(x-y_{1})H_{t}(x-y_{2}) f(y_{1}-y_{2}) \\ =&\int _{\mathbb{R}^{d}}dy_{1}\int _{\mathbb{R}^{d}}dy_{2} H_{t}(y_{1})H_{t}(y_{2}) f(y_{1}-y_{2}) \ \\ = & \int _{\mathbb{R}^{d}} e^{-8\pi ^{2} t|\xi |^{2}} \lambda (d\xi ) \\ \leqslant & \sup _{\xi \in \mathbb{R}^{d}}\left (e^{-8\pi ^{2} t|\xi |^{2}} \left (1+|\xi |^{2}\right )^{\eta }\right ) \times \int _{\mathbb{R}^{d}} \frac{1}{\left (1+|\xi |^{2}\right )^{\eta }}\lambda (d\xi ) \\ \leqslant &K_{\eta } \left (1\vee \left (\frac{\eta }{8\pi ^{2} }\right )^{ \eta } t^{-\eta }\right ). \end{aligned}$$

Based on the above inequality, it is easily to obtain (4.55). The proof is complete. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, S., Wang, R. Transportation Inequalities Under Uniform Metric for a Stochastic Heat Equation Driven by Time-White and Space-Colored Noise. Acta Appl Math 170, 81–97 (2020). https://doi.org/10.1007/s10440-020-00325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00325-x

Keywords

Mathematics Subject Classification (2000)

Navigation